Publication:
Approximation by special values of harmonic zeta function and log-sine integrals

dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorAlkan, Emre
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.date.accessioned2024-11-09T23:59:30Z
dc.date.issued2013
dc.description.abstractMotivated by applications of log-sine integrals to a wide range of mathematical and physical problems, it is shown that real numbers and certain types of log-sine integrals can be strongly approximated by linear combinations of special values of the harmonic zeta function with the property that the coefficients belonging to these combinations turn out to be universal in the sense of being independent of special values. The approximation of real numbers by combinations of special values is reminiscent of the classical Diophantine approximation of Liouville numbers by rationals. Moreover, explicit representations of some specific log-sine integrals are obtained in terms of special values of the harmonic zeta function and the Riemann zeta function through a study of Fourier series involving harmonic numbers. In particular, special values of the harmonic zeta function and the less studied odd harmonic zeta function are expressed in terms of log-sine integrals over [0, 2 pi] and [0, pi].
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.issue3
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.volume7
dc.identifier.doi10.4310/CNTP.2013.v7.n3.a5
dc.identifier.eissn1931-4531
dc.identifier.issn1931-4523
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-84902515777
dc.identifier.urihttps://doi.org/10.4310/CNTP.2013.v7.n3.a5
dc.identifier.urihttps://hdl.handle.net/20.500.14288/15653
dc.identifier.wos336469500005
dc.keywordsStatistical theory
dc.keywordsComplex systems
dc.keywordsEnergy levels
dc.keywordsDiophantine approximation
dc.keywordsArithmetic functions
dc.keywordsRiemann zeta
dc.keywordsL-series
dc.keywordsPolylogarithms
dc.keywordsIdentities
dc.language.isoeng
dc.publisherInt Press Boston, Inc
dc.relation.ispartofCommunications in Number Theory and Physics
dc.subjectMathematics, Applied
dc.subjectMathematics
dc.subjectPhysics, Mathematical
dc.titleApproximation by special values of harmonic zeta function and log-sine integrals
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorAlkan, Emre
local.publication.orgunit1College of Sciences
local.publication.orgunit2Department of Mathematics
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isParentOrgUnitOfPublicationaf0395b0-7219-4165-a909-7016fa30932d
relation.isParentOrgUnitOfPublication.latestForDiscoveryaf0395b0-7219-4165-a909-7016fa30932d

Files