Publication:
Artificial intelligence based methods for hot spot prediction

dc.contributor.coauthorN/A
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.departmentDepartment of Chemical and Biological Engineering
dc.contributor.departmentKUIS AI (Koç University & İş Bank Artificial Intelligence Center)
dc.contributor.departmentGraduate School of Sciences and Engineering
dc.contributor.kuauthorÖvek, Damla
dc.contributor.kuauthorAbalı, Zeynep
dc.contributor.kuauthorZeylan, Melisa Ece
dc.contributor.kuauthorKeskin, Özlem
dc.contributor.kuauthorGürsoy, Attila
dc.contributor.kuauthorTunçbağ, Nurcan
dc.contributor.kuprofilePhD Student
dc.contributor.kuprofilePhD Student
dc.contributor.kuprofilePhD Student
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofileFaculty Member
dc.contributor.schoolcollegeinstituteGRADUATE SCHOOL OF SCIENCES AND ENGINEERING
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteResearch Center
dc.contributor.yokidN/A
dc.contributor.yokidN/A
dc.contributor.yokidN/A
dc.contributor.yokid26605
dc.contributor.yokid8745
dc.contributor.yokid245513
dc.date.accessioned2024-11-09T23:00:46Z
dc.date.issued2022
dc.description.abstractProteins interact through their interfaces to fulfill essential functions in the cell. They bind to their partners in a highly specific manner and form complexes that have a profound effect on understanding the biological pathways they are involved in. Any abnormal interactions may cause diseases. Therefore, the identification of small molecules which modulate protein interactions through their interfaces has high thera-peutic potential. However, discovering such molecules is challenging. Most protein-protein binding affinity is attributed to a small set of amino acids found in protein interfaces known as hot spots. Recent studies demonstrate that drug-like small molecules specifically may bind to hot spots. Therefore, hot spot prediction is crucial. As experimental data accumulates, artificial intelligence begins to be used for computational hot spot prediction. First, we review machine learning and deep learning for computational hot spot prediction and then explain the significance of hot spots toward drug design.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.openaccessNO
dc.description.sponsorshipUNESCO-L'Oreal International Rising Talent Fellowship NT has received support from UNESCO-L'Oreal International Rising Talent Fellowship.
dc.description.volume72
dc.identifier.doi10.1016/j.sbi.2021.11.003
dc.identifier.eissn1879-033X
dc.identifier.issn0959-440X
dc.identifier.scopus2-s2.0-85122482413
dc.identifier.urihttp://dx.doi.org/10.1016/j.sbi.2021.11.003
dc.identifier.urihttps://hdl.handle.net/20.500.14288/8120
dc.identifier.wos768730600025
dc.keywordsProtein-protein interactions
dc.keywordsFree-energy
dc.keywordsWeb server
dc.keywordsDatabase
dc.keywordsBinding
dc.keywordsMutations
dc.keywordsDiscovery
dc.keywordsTopology
dc.keywordsResidues
dc.keywordsTree
dc.languageEnglish
dc.publisherCurrent Biology Ltd
dc.sourceCurrent Opinion in Structural Biology
dc.subjectBiochemistry
dc.subjectMolecular biology
dc.subjectCell biology
dc.titleArtificial intelligence based methods for hot spot prediction
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0001-5300-8098
local.contributor.authoridN/A
local.contributor.authorid0000-0001-8133-8940
local.contributor.authorid0000-0002-4202-4049
local.contributor.authorid0000-0002-2297-2113
local.contributor.authorid0000-0002-0389-9459
local.contributor.kuauthorÖvek, Damla
local.contributor.kuauthorAbalı, Zeynep
local.contributor.kuauthorZeylan, Melisa Ece
local.contributor.kuauthorKeskin, Özlem
local.contributor.kuauthorGürsoy, Attila
local.contributor.kuauthorTunçbağ, Nurcan
local.publication.orgunit1GRADUATE SCHOOL OF SCIENCES AND ENGINEERING
local.publication.orgunit1College of Engineering
local.publication.orgunit1Research Center
local.publication.orgunit2Department of Chemical and Biological Engineering
local.publication.orgunit2Department of Computer Engineering
local.publication.orgunit2KUIS AI (Koç University & İş Bank Artificial Intelligence Center)
local.publication.orgunit2Graduate School of Sciences and Engineering
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublicationc747a256-6e0c-4969-b1bf-3b9f2f674289
relation.isOrgUnitOfPublication77d67233-829b-4c3a-a28f-bd97ab5c12c7
relation.isOrgUnitOfPublication3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isParentOrgUnitOfPublication434c9663-2b11-4e66-9399-c863e2ebae43
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublicationd437580f-9309-4ecb-864a-4af58309d287
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files