Publication:
Selection rules for estimating the solubility of C4-hydrocarbons in imidazolium ionic liquids determined by machine-learning tools

dc.contributor.coauthorCan, Elif
dc.contributor.coauthorYıldırım, Ramazan
dc.contributor.departmentN/A
dc.contributor.departmentDepartment of Chemical and Biological Engineering
dc.contributor.departmentDepartment of Chemical and Biological Engineering
dc.contributor.departmentDepartment of Chemical and Biological Engineering
dc.contributor.kuauthorJalal, Ahsan
dc.contributor.kuauthorKeskin, Seda
dc.contributor.kuauthorUzun, Alper
dc.contributor.kuprofilePhD Student
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofileFaculty Member
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokidN/A
dc.contributor.yokid40548
dc.contributor.yokid59917
dc.date.accessioned2024-11-09T23:47:19Z
dc.date.issued2019
dc.description.abstractSolubilities of C-4-hydrocarbons, 1,3-butadiene (13BD), trans/cis-2-butene (T2B and C2B), 1-butene (1B), isobutene (i-But), isobutane (i-B), and butane (B), in 3267 different imidazolium-type ionic liquids (ILs) in a temperature range from 273.15 to 373.15 K were estimated by means of the COnductor-like Screening MOdel for Realistic Solvents (COSMO-RS) calculations. Simple temperature-dependent mathematical expressions were developed to predict the solubility of 13BD, C2B, T2B, 1B, i-But, i-B, and B at any temperature in a range from 273 to 373 K. The COSMO-RS results for each hydrocarbon considered were then analyzed using machine learning tools, induding association rule mining and decision tree classification, using semi-empirically derived molecular descriptors of ILs. It was found that the polarizabilities of both cation and anion, together with the anion's CPK (space filling model) area, are the most important descriptors for determining the affinity of ILs towards C-4-hydrocarbons. Results also present the selection rules for imidazolium ILs, offering opportunities for the rational design of new ILs by using these simply-determined structural descriptors to meet the desired solubility (or selectivity) requirements for each C-4-hydrocarbon considered.
dc.description.indexedbyWoS
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorshipTUBITAKNational Young Researchers Career Development Program (CAREER) [113M552]
dc.description.sponsorshipKoc University TUPRAS Energy Center (KUTEM)
dc.description.sponsorshipTUBA-GEBIP Award
dc.description.sponsorshipTARLA
dc.description.sponsorshipHEC Pakistan scholarship This study is supported by TUBITAKNational Young Researchers Career Development Program (CAREER) (113M552) and by Koc University TUPRAS Energy Center (KUTEM). A.J. acknowledges HEC Pakistan scholarship and A.U. acknowledges the TUBA-GEBIP Award. A.U. thanks TARLA for collaborative research support.
dc.description.volume284
dc.identifier.doi10.1016/j.molliq.2019.03.182
dc.identifier.eissn1873-3166
dc.identifier.issn0167-7322
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85064267032
dc.identifier.urihttp://dx.doi.org/10.1016/j.molliq.2019.03.182
dc.identifier.urihttps://hdl.handle.net/20.500.14288/14103
dc.identifier.wos469154300056
dc.keywordsIonic liquid
dc.keywordsSolubility
dc.keywordsCOSMO-RS
dc.keywordsC-4-hydrocarbons
dc.keywordsDecision tree
dc.keywordsAssociation rule mining
dc.keywordsMachine learning
dc.keywordsCosmo-rs
dc.keywordsActivity-coefficients
dc.keywordsInfinite dilution
dc.keywordsPartial hydrogenation
dc.keywordsNickel-catalyst
dc.keywordsPrediction
dc.keywordsTemperature
dc.keywords1-butene
dc.keywords1,3-butadiene
dc.keywordsHydrocarbons
dc.languageEnglish
dc.publisherElsevier
dc.sourceJournal of Molecular Liquids
dc.subjectChemistry
dc.subjectPhysical chemistry
dc.subjectPhysics
dc.titleSelection rules for estimating the solubility of C4-hydrocarbons in imidazolium ionic liquids determined by machine-learning tools
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authoridN/A
local.contributor.authorid0000-0001-5968-0336
local.contributor.authorid0000-0001-7024-2900
local.contributor.kuauthorJalal, Ahsan
local.contributor.kuauthorKeskin, Seda
local.contributor.kuauthorUzun, Alper
relation.isOrgUnitOfPublicationc747a256-6e0c-4969-b1bf-3b9f2f674289
relation.isOrgUnitOfPublication.latestForDiscoveryc747a256-6e0c-4969-b1bf-3b9f2f674289

Files