Publication: Deep COVID DeteCT: an international experience on COVID-19 lung detection and prognosis using chest CT
dc.contributor.coauthor | Lee, Edward H. | |
dc.contributor.coauthor | Zheng, Jimmy | |
dc.contributor.coauthor | Colak, Errol | |
dc.contributor.coauthor | Mohammadzadeh, Maryam | |
dc.contributor.coauthor | Houshmand, Golnaz | |
dc.contributor.coauthor | Bevins, Nicholas | |
dc.contributor.coauthor | Kitamura, Felipe | |
dc.contributor.coauthor | Reis, Eduardo Pontes | |
dc.contributor.coauthor | Kim, Jae-Kwang | |
dc.contributor.coauthor | Klochko, Chad | |
dc.contributor.coauthor | Han, Michelle | |
dc.contributor.coauthor | Moradian, Sadegh | |
dc.contributor.coauthor | Mohammadzadeh, Ali | |
dc.contributor.coauthor | Sharifian, Hashem | |
dc.contributor.coauthor | Hashemi, Hassan | |
dc.contributor.coauthor | Firouznia, Kavous | |
dc.contributor.coauthor | Ghanaati, Hossien | |
dc.contributor.coauthor | Gity, Masoumeh | |
dc.contributor.coauthor | Salehinejad, Hojjat | |
dc.contributor.coauthor | Alves, Henrique | |
dc.contributor.coauthor | Seekins, Jayne | |
dc.contributor.coauthor | Abdala, Nitamar | |
dc.contributor.coauthor | Pouraliakbar, Hamidreza | |
dc.contributor.coauthor | Maleki, Majid | |
dc.contributor.coauthor | Wong, S. Simon | |
dc.contributor.coauthor | Yeom, Kristen W. | |
dc.contributor.kuauthor | Altınmakas, Emre | |
dc.contributor.kuauthor | Doğan, Hakan | |
dc.contributor.kuauthor | Atasoy, Kayhan Çetin | |
dc.contributor.kuprofile | Other | |
dc.contributor.kuprofile | Researcher | |
dc.contributor.kuprofile | Faculty Member | |
dc.contributor.schoolcollegeinstitute | School of Medicine | |
dc.contributor.yokid | N/A | |
dc.contributor.yokid | 327614 | |
dc.contributor.yokid | N/A | |
dc.date.accessioned | 2024-11-09T12:11:29Z | |
dc.date.issued | 2021 | |
dc.description.abstract | The Coronavirus disease 2019 (COVID-19) presents open questions in how we clinically diagnose and assess disease course. Recently, chest computed tomography (CT) has shown utility for COVID-19 diagnosis. In this study, we developed Deep COVID DeteCT (DCD), a deep learning convolutional neural network (CNN) that uses the entire chest CT volume to automatically predict COVID-19 (COVID+) from non-COVID-19 (COVID-) pneumonia and normal controls. We discuss training strategies and differences in performance across 13 international institutions and 8 countries. The inclusion of non-China sites in training significantly improved classification performance with area under the curve (AUCs) and accuracies above 0.8 on most test sites. Furthermore, using available follow-up scans, we investigate methods to track patient disease course and predict prognosis. | |
dc.description.fulltext | YES | |
dc.description.indexedby | WoS | |
dc.description.indexedby | Scopus | |
dc.description.indexedby | PubMed | |
dc.description.issue | 1 | |
dc.description.openaccess | YES | |
dc.description.publisherscope | International | |
dc.description.sponsoredbyTubitakEu | N/A | |
dc.description.sponsorship | Stanford Chemistry, Engineering and Medicine for Human Health (ChEM-H) | |
dc.description.sponsorship | RISE Program | |
dc.description.sponsorship | Stanford Center for Artificial Intelligence in Medicine and Imaging (AIMI) | |
dc.description.version | Publisher version | |
dc.description.volume | 4 | |
dc.format | ||
dc.identifier.doi | 10.1038/s41746-020-00369-1 | |
dc.identifier.embargo | NO | |
dc.identifier.filenameinventoryno | IR02675 | |
dc.identifier.issn | 2398-6352 | |
dc.identifier.link | https://doi.org/10.1038/s41746-020-00369-1 | |
dc.identifier.quartile | N/A | |
dc.identifier.scopus | 2-s2.0-85100074030 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14288/1066 | |
dc.identifier.wos | 616406900001 | |
dc.keywords | COVID-19 | |
dc.language | English | |
dc.publisher | Nature Publishing Group (NPG) | |
dc.relation.grantno | NA | |
dc.relation.uri | http://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/9321 | |
dc.source | NPJ Digital Medicine | |
dc.subject | Medicine | |
dc.subject | Health care sciences and services | |
dc.subject | Medical informatics | |
dc.title | Deep COVID DeteCT: an international experience on COVID-19 lung detection and prognosis using chest CT | |
dc.type | Journal Article | |
dspace.entity.type | Publication | |
local.contributor.authorid | N/A | |
local.contributor.authorid | 0000-0003-2613-0228 | |
local.contributor.authorid | N/A | |
local.contributor.kuauthor | Altınmakas, Emre | |
local.contributor.kuauthor | Doğan, Hakan | |
local.contributor.kuauthor | Atasoy, Kayhan Çetin |
Files
Original bundle
1 - 1 of 1