Publication:
Deep COVID DeteCT: an international experience on COVID-19 lung detection and prognosis using chest CT

dc.contributor.coauthorLee, Edward H.
dc.contributor.coauthorZheng, Jimmy
dc.contributor.coauthorColak, Errol
dc.contributor.coauthorMohammadzadeh, Maryam
dc.contributor.coauthorHoushmand, Golnaz
dc.contributor.coauthorBevins, Nicholas
dc.contributor.coauthorKitamura, Felipe
dc.contributor.coauthorReis, Eduardo Pontes
dc.contributor.coauthorKim, Jae-Kwang
dc.contributor.coauthorKlochko, Chad
dc.contributor.coauthorHan, Michelle
dc.contributor.coauthorMoradian, Sadegh
dc.contributor.coauthorMohammadzadeh, Ali
dc.contributor.coauthorSharifian, Hashem
dc.contributor.coauthorHashemi, Hassan
dc.contributor.coauthorFirouznia, Kavous
dc.contributor.coauthorGhanaati, Hossien
dc.contributor.coauthorGity, Masoumeh
dc.contributor.coauthorSalehinejad, Hojjat
dc.contributor.coauthorAlves, Henrique
dc.contributor.coauthorSeekins, Jayne
dc.contributor.coauthorAbdala, Nitamar
dc.contributor.coauthorPouraliakbar, Hamidreza
dc.contributor.coauthorMaleki, Majid
dc.contributor.coauthorWong, S. Simon
dc.contributor.coauthorYeom, Kristen W.
dc.contributor.kuauthorAltınmakas, Emre
dc.contributor.kuauthorDoğan, Hakan
dc.contributor.kuauthorAtasoy, Kayhan Çetin
dc.contributor.kuprofileOther
dc.contributor.kuprofileResearcher
dc.contributor.kuprofileFaculty Member
dc.contributor.schoolcollegeinstituteSchool of Medicine
dc.contributor.yokidN/A
dc.contributor.yokid327614
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T12:11:29Z
dc.date.issued2021
dc.description.abstractThe Coronavirus disease 2019 (COVID-19) presents open questions in how we clinically diagnose and assess disease course. Recently, chest computed tomography (CT) has shown utility for COVID-19 diagnosis. In this study, we developed Deep COVID DeteCT (DCD), a deep learning convolutional neural network (CNN) that uses the entire chest CT volume to automatically predict COVID-19 (COVID+) from non-COVID-19 (COVID-) pneumonia and normal controls. We discuss training strategies and differences in performance across 13 international institutions and 8 countries. The inclusion of non-China sites in training significantly improved classification performance with area under the curve (AUCs) and accuracies above 0.8 on most test sites. Furthermore, using available follow-up scans, we investigate methods to track patient disease course and predict prognosis.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue1
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipStanford Chemistry, Engineering and Medicine for Human Health (ChEM-H)
dc.description.sponsorshipRISE Program
dc.description.sponsorshipStanford Center for Artificial Intelligence in Medicine and Imaging (AIMI)
dc.description.versionPublisher version
dc.description.volume4
dc.formatpdf
dc.identifier.doi10.1038/s41746-020-00369-1
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR02675
dc.identifier.issn2398-6352
dc.identifier.linkhttps://doi.org/10.1038/s41746-020-00369-1
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85100074030
dc.identifier.urihttps://hdl.handle.net/20.500.14288/1066
dc.identifier.wos616406900001
dc.keywordsCOVID-19
dc.languageEnglish
dc.publisherNature Publishing Group (NPG)
dc.relation.grantnoNA
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/9321
dc.sourceNPJ Digital Medicine
dc.subjectMedicine
dc.subjectHealth care sciences and services
dc.subjectMedical informatics
dc.titleDeep COVID DeteCT: an international experience on COVID-19 lung detection and prognosis using chest CT
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authoridN/A
local.contributor.authorid0000-0003-2613-0228
local.contributor.authoridN/A
local.contributor.kuauthorAltınmakas, Emre
local.contributor.kuauthorDoğan, Hakan
local.contributor.kuauthorAtasoy, Kayhan Çetin

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
9321.pdf
Size:
5.42 MB
Format:
Adobe Portable Document Format