Publication:
Use of line spectral frequencies for emotion recognition from speech

dc.contributor.coauthorErdem, Çiǧdem Eroǧlu
dc.contributor.coauthorErdem, A. Tanju
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.departmentGraduate School of Sciences and Engineering
dc.contributor.kuauthorBozkurt, Elif
dc.contributor.kuauthorErzin, Engin
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGRADUATE SCHOOL OF SCIENCES AND ENGINEERING
dc.date.accessioned2024-11-09T22:58:25Z
dc.date.issued2010
dc.description.abstractWe propose the use of the line spectral frequency (LSF) features for emotion recognition from speech, which have not been been previously employed for emotion recognition to the best of our knowledge. Spectral features such as mel-scaled cepstral coefficients have already been successfully used for the parameterization of speech signals for emotion recognition. The LSF features also offer a spectral representation for speech, moreover they carry intrinsic information on the formant structure as well, which are related to the emotional state of the speaker [4]. We use the Gaussian mixture model (GMM) classifier architecture, that captures the static color of the spectral features. Experimental studies performed over the Berlin Emotional Speech Database and the FAU Aibo Emotion Corpus demonstrate that decision fusion configurations with LSF features bring a consistent improvement over the MFCC based emotion classification rates. © 2010 IEEE.
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.identifier.doi10.1109/ICPR.2010.903
dc.identifier.isbn9780-7695-4109-9
dc.identifier.issn1051-4651
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-78149483511
dc.identifier.urihttps://doi.org/10.1109/ICPR.2010.903
dc.identifier.urihttps://hdl.handle.net/20.500.14288/7720
dc.keywordsCepstral coefficients
dc.keywordsDecision fusion
dc.keywordsEmotion classification
dc.keywordsEmotion recognition
dc.keywordsEmotional speech
dc.keywordsEmotional state
dc.keywordsExperimental studies
dc.keywordsGaussian Mixture Model
dc.keywordsLine spectral frequencies
dc.keywordsSpectral feature
dc.keywordsSpectral representations
dc.keywordsSpeech signals
dc.keywordsFeature extraction
dc.keywordsSignal encoding
dc.keywordsSpeech recognition
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.ispartofProceedings - International Conference on Pattern Recognition
dc.subjectComputer engineering
dc.titleUse of line spectral frequencies for emotion recognition from speech
dc.typeConference Proceeding
dspace.entity.typePublication
local.contributor.kuauthorErzin, Engin
local.contributor.kuauthorBozkurt, Elif
local.publication.orgunit1College of Engineering
local.publication.orgunit1GRADUATE SCHOOL OF SCIENCES AND ENGINEERING
local.publication.orgunit2Department of Computer Engineering
local.publication.orgunit2Graduate School of Sciences and Engineering
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication434c9663-2b11-4e66-9399-c863e2ebae43
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files