Publication:
The AI-KU system at the SPMRL 2013 shared task: unsupervised features for dependency parsing

dc.contributor.departmentN/A
dc.contributor.departmentN/A
dc.contributor.kuauthorCirik, Volkan
dc.contributor.kuauthorŞensoy, Hüsnü
dc.contributor.kuprofileMaster Student
dc.contributor.kuprofilePhD Student
dc.contributor.researchcenterKoç Üniversitesi İş Bankası Yapay Zeka Uygulama ve Araştırma Merkezi (KUIS AI)/ Koç University İş Bank Artificial Intelligence Center (KUIS AI)
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.yokidN/A
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T23:29:52Z
dc.date.issued2013
dc.description.abstractWe propose the use of the word categories and embeddings induced from raw text as auxiliary features in dependency parsing. To induce word features, we make use of contextual, morphologic and orthographic properties of the words. To exploit the contextual information, we make use of substitute words, the most likely substitutes for target words, generated by using a statistical language model. We generate morphologic and orthographic properties of word types in an unsupervised manner. We use a co-occurrence model with these properties to embed words onto a 25-dimensional unit sphere. The AI-KU system shows improvements for some of the languages it is trained on for the first Shared Task of Statistical Parsing of Morphologically Rich Languages.
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.identifier.doiN/A
dc.identifier.isbn9781-9372-8497-8
dc.identifier.linkhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84926196338&partnerID=40&md5=e7547dab533e32332c8567c68b191178
dc.identifier.scopus2-s2.0-84926196338
dc.identifier.uriN/A
dc.identifier.urihttps://hdl.handle.net/20.500.14288/12138
dc.keywordsNatural language processing systems
dc.keywordsCo-occurrence
dc.keywordsContextual information
dc.keywordsDependency parsing
dc.keywordsMost likely
dc.keywordsStatistical language modeling
dc.keywordsStatistical parsing
dc.keywordsTarget words
dc.keywordsUnit spheres
dc.keywordsComputational linguistics
dc.languageEnglish
dc.publisherAssociation for Computational Linguistics (ACL)
dc.sourceSPMRL 2013 - 4th Workshop on Statistical Parsing of Morphologically Rich Languages, Proceedings of the Workshop
dc.subjectComputer science
dc.subjectArtificial intelligence
dc.titleThe AI-KU system at the SPMRL 2013 shared task: unsupervised features for dependency parsing
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authoridN/A
local.contributor.authoridN/A
local.contributor.kuauthorCirik, Volkan
local.contributor.kuauthorŞensoy, Hüsnü

Files