Publication:
Hierarchical spatial decompositions under local differential privacy

dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.kuauthorAlptekin, Ece
dc.contributor.kuauthorBalioğlu, Berkay Kemal
dc.contributor.kuauthorGürsoy, Mehmet Emre
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGRADUATE SCHOOL OF SCIENCES AND ENGINEERING
dc.date.accessioned2025-12-31T08:21:41Z
dc.date.available2025-12-31
dc.date.issued2025
dc.description.abstractThe popularity of smartphones, GPS-enabled devices, social networks, and connected vehicles all contribute to the increasing volume of spatial data. Spatial decompositions assist in handling big spatial data, and they have been commonly used in the Differential Privacy (DP) literature for range query answering, spatial indexing, count-of-counts histograms, data summarization, and visualization. However, their applications under the emerging Local DP (LDP) notion are scarce. In this article, we study the problem of building hierarchical spatial decompositions under LDP, focusing on two methods: quadtrees and kd-trees. We develop two solutions for quadtrees: a baseline solution that is inspired by the centralized DP literature, and a proposed solution that utilizes a single data collection step from users, propagates density estimates to remaining nodes, and performs structural corrections to the quadtree. Since kd-trees rely on node medians which are data-dependent, we observe that it is not feasible to build kd-trees using a single data collection step. We therefore propose an iterative solution that constructs kd-trees in top-down fashion by utilizing a novel algorithm for estimating node medians at each tree depth. We experimentally evaluate our quadtree and kd-tree algorithms using four real-world spatial datasets, multiple utility metrics, varying privacy budgets, and tree parameters. Results demonstrate that our algorithms enable the building of accurate spatial decompositions that provide high utility in practice. Notably, our quadtrees and kd-trees achieve substantially lower errors in answering spatial density queries (up to 10-fold improvement) when compared with a state-of-the-art method.
dc.description.fulltextYes
dc.description.harvestedfromManual
dc.description.indexedbyScopus
dc.description.indexedbyWOS
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorshipTürkiye Bilimsel ve Teknolojik Araştırma Kurumu, TUBITAK, (121E303); Türkiye Bilimsel ve Teknolojik Araştırma Kurumu, TUBITAK
dc.identifier.doi10.1145/3744569
dc.identifier.embargoNo
dc.identifier.issn1556-4681
dc.identifier.issue7
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-105018451758
dc.identifier.urihttps://doi.org/10.1145/3744569
dc.identifier.urihttps://hdl.handle.net/20.500.14288/31602
dc.identifier.volume19
dc.identifier.wos001638936100003
dc.keywordsLocal differential privacy
dc.keywordsLocation-based services
dc.keywordsSpatial data mining
dc.keywordsSpatial-temporal systems
dc.language.isoeng
dc.publisherAssociation for Computing Machinery
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofACM Transactions on Knowledge Discovery from Data
dc.relation.openaccessYes
dc.rightsCC BY-NC-ND (Attribution-NonCommercial-NoDerivs)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectComputer science
dc.titleHierarchical spatial decompositions under local differential privacy
dc.typeJournal Article
dspace.entity.typePublication
person.familyNameAlptekin
person.familyNameBalioğlu
person.familyNameGürsoy
person.givenNameEce
person.givenNameBerkay Kemal
person.givenNameMehmet Emre
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication434c9663-2b11-4e66-9399-c863e2ebae43
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files