Publication:
A characterization of heaviness in terms of relative symplectic cohomology

dc.contributor.coauthorMak, Cheuk Yu
dc.contributor.coauthorSun, Yuhan
dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorVarolgüneş, Umut
dc.contributor.otherDepartment of Mathematics
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.date.accessioned2024-12-29T09:38:40Z
dc.date.issued2024
dc.description.abstractFor a compact subset K$K$ of a closed symplectic manifold (M,omega)$(M, \omega)$, we prove that K$K$ is heavy if and only if its relative symplectic cohomology over the Novikov field is nonzero. As an application, we show that if two compact sets are not heavy and Poisson commuting, then their union is also not heavy. A discussion on superheaviness together with some partial results is also included.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue1
dc.description.openaccessGreen Submitted, hybrid
dc.description.publisherscopeInternational
dc.description.sponsorsWe thank Leonid Polterovich and Sobhan Seyfaddini for helpful discussions and their interest. We also thank the anonymous referee for helpful suggestions.
dc.description.volume17
dc.identifier.doi10.1112/topo.12327
dc.identifier.eissn1753-8424
dc.identifier.issn1753-8416
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85187162799
dc.identifier.urihttps://doi.org/10.1112/topo.12327
dc.identifier.urihttps://hdl.handle.net/20.500.14288/22775
dc.identifier.wos1181406800001
dc.keywordsSpectral invariants
dc.keywordsFloer theory
dc.languageen
dc.publisherWiley
dc.relation.grantnoSimons Collaboration on Homological Mirror Symmetry
dc.sourceJournal of Topology
dc.subjectMathematics
dc.titleA characterization of heaviness in terms of relative symplectic cohomology
dc.typeJournal article
dspace.entity.typePublication
local.contributor.kuauthorVarolgüneş, Umut
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe

Files