Publication:
Real-time audiovisual laughter detection

dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.departmentGraduate School of Sciences and Engineering
dc.contributor.kuauthorBuçinca, Zana
dc.contributor.kuauthorErzin, Engin
dc.contributor.kuauthorSezgin, Tevfik Metin
dc.contributor.kuauthorTürker, Bekir Berker
dc.contributor.kuauthorYemez, Yücel
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGRADUATE SCHOOL OF SCIENCES AND ENGINEERING
dc.date.accessioned2024-11-09T23:34:30Z
dc.date.issued2017
dc.description.abstractLaughter detection is an essential aspect towards effective human-computer interaction. This work primarily addresses the problem of laughter detection in a real-time environment. We utilize annotated audio and visual data collected from a Kinect sensor to identify discriminative features for audio and video, separately. We show how the features can be used with classifiers such as support vector machines (SVM). The two modalities are then fused into a single output to form a decision. We test our setup by emulating real-time data with Kinect sensor, and compare the results with the offline version of the setup. Our results indicate that our laughter detection system gives a promising performance for a real-time human-computer interactions.
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.identifier.doi10.1109/SIU.2017.7960598
dc.identifier.isbn9781-5090-6494-6
dc.identifier.scopus2-s2.0-85026307863
dc.identifier.urihttps://doi.org/10.1109/SIU.2017.7960598
dc.identifier.urihttps://hdl.handle.net/20.500.14288/12363
dc.identifier.wos413813100461
dc.keywordsAffective computing and interaction
dc.keywordsApplied machine learning
dc.keywordsReal-Time laughter detection
dc.language.isotur
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.ispartof2017 25th Signal Processing and Communications Applications Conference, SIU 2017
dc.subjectAcoustics
dc.subjectComputer Science
dc.subjectArtificial intelligence
dc.subjectComputer science
dc.subjectSoftware Electrical electronics engineering engineering
dc.titleReal-time audiovisual laughter detection
dc.title.alternativeÇok kipli ve gerçek zamanlı gülme sezimi
dc.typeConference Proceeding
dspace.entity.typePublication
local.contributor.kuauthorTürker, Bekir Berker
local.contributor.kuauthorBuçinca, Zana
local.contributor.kuauthorSezgin, Tevfik Metin
local.contributor.kuauthorYemez, Yücel
local.contributor.kuauthorErzin, Engin
local.publication.orgunit1GRADUATE SCHOOL OF SCIENCES AND ENGINEERING
local.publication.orgunit1College of Engineering
local.publication.orgunit2Department of Computer Engineering
local.publication.orgunit2Graduate School of Sciences and Engineering
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication434c9663-2b11-4e66-9399-c863e2ebae43
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files