Publication:
Fuzzy framework for unsupervised video content characterization and shot classification

dc.contributor.coauthorFerman, A. Müfit
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorTekalp, Ahmet Murat
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Electrical and Electronics Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokid26207
dc.date.accessioned2024-11-09T12:12:05Z
dc.date.issued2001
dc.description.abstractIn this paper we present a fuzzy framework for domain-dependent analysis of video sequences. Fuzzy clustering and cluster validation methods are first employed to determine the number of distinct shot patterns and construct a reference model for a program or video domain of interest, using an appropriate training set. This model is subsequently utilized to assign new input data to the available classes by a fuzzy minimum-distance classifier. Additional domain-specific information can be introduced after classification to further enhance the annotations associated with every shot. The main advantage of the approach is that it builds a model for the input video automatically from training data, and thus eliminates the need for extensive user supervision. The fuzzy representation method improves the interpretability of the results, and reduces the number of erroneous classifications, since the continuous class affiliations of each input sample provide a confidence measure for the final assignments. The proposed approach presents a computationally efficient, unsupervised method for building browsable semantic descriptions of video sequences. Specifically, the algorithm can be used to generate various components of an MPEG-7-compliant description. © 2001 SPIE and IS&T.
dc.description.fulltextYES
dc.description.indexedbyScopus
dc.description.issue4
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipN/A
dc.description.versionPublisher version
dc.description.volume10
dc.formatpdf
dc.identifier.doi10.1117/1.1406946
dc.identifier.eissn1560-229X
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR00495
dc.identifier.issn1017-9909
dc.identifier.linkhttps://doi.org/10.1117/1.1406946
dc.identifier.quartileQ4
dc.identifier.scopus2-s2.0-0035492906
dc.identifier.urihttps://hdl.handle.net/20.500.14288/1133
dc.keywordsVideo signal processing
dc.keywordsAlgorithms
dc.keywordsComputational methods
dc.keywordsFuzzy sets
dc.keywordsBrowsable semantic description
dc.keywordsDomain-dependent analysis
dc.keywordsFuzzy minimum-distance classifier
dc.keywordsMoving picture experts group
dc.keywordsShot classification
dc.keywordsAlgorithms
dc.keywordsComputational methods
dc.keywordsFuzzy sets
dc.keywordsImage compression
dc.keywordsImage quality
dc.keywordsMembership functions
dc.keywordsSemantics
dc.keywordsStatistical methods
dc.keywordsVideo signal processing
dc.languageEnglish
dc.publisherSociety of Photo-optical Instrumentation Engineers (SPIE)
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/562
dc.sourceJournal of Electronic Imaging
dc.subjectElectrical and electronic engineering
dc.subjectDigital humanities
dc.titleFuzzy framework for unsupervised video content characterization and shot classification
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0003-1465-8121
local.contributor.kuauthorTekalp, Ahmet Murat
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
562.pdf
Size:
616.72 KB
Format:
Adobe Portable Document Format