Publication:
3D microprinting of iron platinum nanoparticle-based magnetic mobile microrobots

dc.contributor.coauthorGiltinan, Joshua
dc.contributor.coauthorSridhar, Varun
dc.contributor.coauthorBozüyük, Uğur
dc.contributor.coauthorSheehan, Devin
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.kuauthorSitti, Metin
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Mechanical Engineering
dc.contributor.schoolcollegeinstituteSchool of Medicine
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokid297104
dc.date.accessioned2024-11-09T13:25:41Z
dc.date.issued2021
dc.description.abstractWireless magnetic microrobots are envisioned to revolutionize minimally invasive medicine. While many promising medical magnetic microrobots are proposed, the ones using hard magnetic materials are not mostly biocompatible, and the ones using biocompatible soft magnetic nanoparticles are magnetically very weak and, therefore, difficult to actuate. Thus, biocompatible hard magnetic micro/nanomaterials are essential toward easy-to-actuate and clinically viable 3D medical microrobots. To fill such crucial gap, this study proposes ferromagnetic and biocompatible iron platinum (FePt) nanoparticle-based 3D microprinting of microrobots using the two-photon polymerization technique. A modified one-pot synthesis method is presented for producing FePt nanoparticles in large volumes and 3D printing of helical microswimmers made from biocompatible trimethylolpropane ethoxylate triacrylate (PETA) polymer with embedded FePt nanoparticles. The 30 mu m long helical magnetic microswimmers are able to swim at speeds of over five body lengths per second at 200Hz, making them the fastest helical swimmer in the tens of micrometer length scale at the corresponding low-magnitude actuation fields of 5-10mT. It is also experimentally in vitro verified that the synthesized FePt nanoparticles are biocompatible. Thus, such 3D-printed microrobots are biocompatible and easy to actuate toward creating clinically viable future medical microrobots.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyPubMed
dc.description.issue1
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuEU
dc.description.sponsorshipEuropean Union (EU)
dc.description.sponsorshipHorizon 2020
dc.description.sponsorshipEuropean Research Council (ERC)
dc.description.sponsorshipAdvanced Grant
dc.description.sponsorshipSoMMoR Project
dc.description.sponsorshipMax Planck Society
dc.description.sponsorshipProjekt DEAL
dc.description.versionPublisher version
dc.description.volume3
dc.formatpdf
dc.identifier.doi10.1002/aisy.202000204
dc.identifier.eissn2640-4567
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR03033
dc.identifier.linkhttps://doi.org/10.1002/aisy.202000204
dc.identifier.quartileQ1
dc.identifier.urihttps://hdl.handle.net/20.500.14288/3457
dc.identifier.wos669799200014
dc.keywords3D microprinting
dc.keywordsBiocompatible FePt nanoparticles
dc.keywordsMagnetic microrobots
dc.keywordsTwo-photon polymerization
dc.languageEnglish
dc.publisherWiley
dc.relation.grantno834531
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/9695
dc.sourceAdvanced Intelligent Systems
dc.subjectAutomation and control systems
dc.subjectComputer science
dc.subjectArtificial intelligence
dc.subjectRobotics
dc.title3D microprinting of iron platinum nanoparticle-based magnetic mobile microrobots
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0001-8249-3854
local.contributor.kuauthorSitti, Metin
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
9695.pdf
Size:
3.65 MB
Format:
Adobe Portable Document Format