Publication:
3D-printed micrometer-scale wireless magnetic cilia with metachronal programmability

dc.contributor.coauthorZhang, Shuaizhong
dc.contributor.coauthorHu, Xinghao
dc.contributor.coauthorLi, Meng
dc.contributor.coauthorBozüyük, Uğur
dc.contributor.coauthorZhang, Rongjing
dc.contributor.coauthorSuadiye, Eylül
dc.contributor.coauthorHan, Jie
dc.contributor.coauthorWang, Fan
dc.contributor.coauthorOnck, Patrick
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.kuauthorSitti, Metin
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Mechanical Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokid297104
dc.date.accessioned2024-11-10T00:03:05Z
dc.date.issued2023
dc.description.abstractBiological cilia play essential roles in self-propulsion, food capture, and cell transportation by performing coordinated metachronal motions. Experimental studies to emulate the biological cilia metachronal coordination are challenging at the micrometer length scale because of current limitations in fabrication methods and materials. We report on the creation of wirelessly actuated magnetic artificial cilia with biocompatibility and metachronal programmability at the micrometer length scale. Each cilium is fabricated by direct laser printing a silk fibroin hydrogel beam affixed to a hard magnetic FePt Janus microparticle. The 3D-printed cilia show stable actuation performance, high temperature resistance, and high mechanical endurance. Programmable metachronal coordination can be achieved by programming the orientation of the identically magnetized FePt Janus microparticles, which enables the generation of versatile microfluidic patterns. Our platform offers an unprecedented solution to create bioinspired microcilia for programmable microfluidic systems, biomedical engineering, and biocompatible implants.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue12
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsorshipEuropean Research Council (ERC) Advanced Grant SoMMoR project
dc.description.volume9
dc.identifier.doi10.1126/sciadv.adf9462
dc.identifier.issn2375-2548
dc.identifier.linkhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85150772665&doi=10.1126%2fsciadv.adf9462&partnerID=40&md5=b21f5e3e7e9c8d8f191b59eaaa919505
dc.identifier.scopus2-s2.0-85150772665
dc.identifier.urihttps://dx.doi.org/10.1126/sciadv.adf9462
dc.identifier.urihttps://hdl.handle.net/20.500.14288/16262
dc.identifier.wos967266700010
dc.keywordsCilia
dc.keywordsMagnetic Phenomena
dc.keywordsModels, Biological
dc.keywordsMotion
dc.keywordsPrinting, Three-Dimensional
dc.keywordsBiological model
dc.keywordsCilium
dc.keywordsMagnetism
dc.keywordsMotion
dc.keywordsThree dimensional printing
dc.languageEnglish
dc.publisherAmerican Association for the Advancement of Science
dc.relation.grantno834531
dc.sourceScience advances
dc.subjectBiomedical engineering
dc.title3D-printed micrometer-scale wireless magnetic cilia with metachronal programmability
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0001-8249-3854
local.contributor.kuauthorSitti, Metin
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36

Files