Publication: 3D-printed micrometer-scale wireless magnetic cilia with metachronal programmability
dc.contributor.coauthor | Zhang, Shuaizhong | |
dc.contributor.coauthor | Hu, Xinghao | |
dc.contributor.coauthor | Li, Meng | |
dc.contributor.coauthor | Bozüyük, Uğur | |
dc.contributor.coauthor | Zhang, Rongjing | |
dc.contributor.coauthor | Suadiye, Eylül | |
dc.contributor.coauthor | Han, Jie | |
dc.contributor.coauthor | Wang, Fan | |
dc.contributor.coauthor | Onck, Patrick | |
dc.contributor.department | Department of Mechanical Engineering | |
dc.contributor.kuauthor | Sitti, Metin | |
dc.contributor.kuprofile | Faculty Member | |
dc.contributor.other | Department of Mechanical Engineering | |
dc.contributor.schoolcollegeinstitute | College of Engineering | |
dc.contributor.yokid | 297104 | |
dc.date.accessioned | 2024-11-10T00:03:05Z | |
dc.date.issued | 2023 | |
dc.description.abstract | Biological cilia play essential roles in self-propulsion, food capture, and cell transportation by performing coordinated metachronal motions. Experimental studies to emulate the biological cilia metachronal coordination are challenging at the micrometer length scale because of current limitations in fabrication methods and materials. We report on the creation of wirelessly actuated magnetic artificial cilia with biocompatibility and metachronal programmability at the micrometer length scale. Each cilium is fabricated by direct laser printing a silk fibroin hydrogel beam affixed to a hard magnetic FePt Janus microparticle. The 3D-printed cilia show stable actuation performance, high temperature resistance, and high mechanical endurance. Programmable metachronal coordination can be achieved by programming the orientation of the identically magnetized FePt Janus microparticles, which enables the generation of versatile microfluidic patterns. Our platform offers an unprecedented solution to create bioinspired microcilia for programmable microfluidic systems, biomedical engineering, and biocompatible implants. | |
dc.description.indexedby | WoS | |
dc.description.indexedby | Scopus | |
dc.description.indexedby | PubMed | |
dc.description.issue | 12 | |
dc.description.openaccess | YES | |
dc.description.publisherscope | International | |
dc.description.sponsorship | European Research Council (ERC) Advanced Grant SoMMoR project | |
dc.description.volume | 9 | |
dc.identifier.doi | 10.1126/sciadv.adf9462 | |
dc.identifier.issn | 2375-2548 | |
dc.identifier.link | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85150772665&doi=10.1126%2fsciadv.adf9462&partnerID=40&md5=b21f5e3e7e9c8d8f191b59eaaa919505 | |
dc.identifier.scopus | 2-s2.0-85150772665 | |
dc.identifier.uri | https://dx.doi.org/10.1126/sciadv.adf9462 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14288/16262 | |
dc.identifier.wos | 967266700010 | |
dc.keywords | Cilia | |
dc.keywords | Magnetic Phenomena | |
dc.keywords | Models, Biological | |
dc.keywords | Motion | |
dc.keywords | Printing, Three-Dimensional | |
dc.keywords | Biological model | |
dc.keywords | Cilium | |
dc.keywords | Magnetism | |
dc.keywords | Motion | |
dc.keywords | Three dimensional printing | |
dc.language | English | |
dc.publisher | American Association for the Advancement of Science | |
dc.relation.grantno | 834531 | |
dc.source | Science advances | |
dc.subject | Biomedical engineering | |
dc.title | 3D-printed micrometer-scale wireless magnetic cilia with metachronal programmability | |
dc.type | Journal Article | |
dspace.entity.type | Publication | |
local.contributor.authorid | 0000-0001-8249-3854 | |
local.contributor.kuauthor | Sitti, Metin | |
relation.isOrgUnitOfPublication | ba2836f3-206d-4724-918c-f598f0086a36 | |
relation.isOrgUnitOfPublication.latestForDiscovery | ba2836f3-206d-4724-918c-f598f0086a36 |