Publication: A novel haptic feature set for the classification of interactive motor behaviors in collaborative object transfer
dc.contributor.coauthor | Küçükyılmaz, Ayşe | |
dc.contributor.department | Department of Mechanical Engineering | |
dc.contributor.kuauthor | Başdoğan, Çağatay | |
dc.contributor.kuauthor | Şirintuna, Doğanay | |
dc.contributor.kuauthor | Al-Saadi, Zaid Rassim Mohammed | |
dc.contributor.kuprofile | Faculty Member | |
dc.contributor.other | Department of Mechanical Engineering | |
dc.contributor.schoolcollegeinstitute | College of Engineering | |
dc.contributor.schoolcollegeinstitute | Graduate School of Sciences and Engineering | |
dc.contributor.yokid | 125489 | |
dc.contributor.yokid | N/A | |
dc.contributor.yokid | N/A | |
dc.date.accessioned | 2024-11-09T13:07:47Z | |
dc.date.issued | 2021 | |
dc.description.abstract | Haptics provides a natural and intuitive channel of communication during the interaction of two humans in complex physical tasks, such as joint object transportation. However, despite the utmost importance of touch in physical interactions, the use of haptics is under-represented when developing intelligent systems. This article explores the prominence of haptic data to extract information about underlying interaction patterns within physical human-human interaction (pHHI). We work on a joint object transportation scenario involving two human partners, and show that haptic features, based on force/torque information, suffice to identify human interactive behavior patterns. We categorize the interaction into four discrete behavior classes. These classes describe whether the partners work in harmony or face conflicts while jointly transporting an object through translational or rotational movements. In an experimental study, we collect data from 12 human dyads and verify the salience of haptic features by achieving a correct classification rate over 91% using a Random Forest classifier. | |
dc.description.fulltext | YES | |
dc.description.indexedby | WoS | |
dc.description.indexedby | Scopus | |
dc.description.indexedby | PubMed | |
dc.description.issue | 2 | |
dc.description.openaccess | YES | |
dc.description.publisherscope | International | |
dc.description.sponsoredbyTubitakEu | TÜBİTAK | |
dc.description.sponsorship | UK Research and Innovatıon | |
dc.description.sponsorship | CHIST-ERA | |
dc.description.sponsorship | Engineering and Physical Sciences Research Council (EPSRC) | |
dc.description.sponsorship | HEAP | |
dc.description.sponsorship | Human-Guided Learning and Benchmarking of Robotic Heap Sorting | |
dc.description.sponsorship | National Centre for Nuclear Robotics (NCNR) | |
dc.description.sponsorship | CoRSA | |
dc.description.sponsorship | Scientific and Technological Research Council of Turkey (TÜBİTAK) | |
dc.description.sponsorship | University of Baghdad | |
dc.description.version | Author's final manuscript | |
dc.description.volume | 14 | |
dc.format | ||
dc.identifier.doi | 10.1109/TOH.2020.3034244 | |
dc.identifier.eissn | 2329-4051 | |
dc.identifier.embargo | NO | |
dc.identifier.filenameinventoryno | IR03082 | |
dc.identifier.issn | 1939-1412 | |
dc.identifier.link | https://doi.org/10.1109/TOH.2020.3034244 | |
dc.identifier.quartile | Q3 | |
dc.identifier.scopus | 2-s2.0-85096105901 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14288/2632 | |
dc.identifier.wos | 665616100022 | |
dc.keywords | Task analysis | |
dc.keywords | Haptic interfaces | |
dc.keywords | Collaboration | |
dc.keywords | Measurement | |
dc.keywords | Feature extraction | |
dc.keywords | Robot kinematics | |
dc.keywords | Collaborative manipulation | |
dc.keywords | Classification | |
dc.keywords | Dyadic manipulation | |
dc.keywords | Feature extraction | |
dc.keywords | Haptic feedback | |
dc.keywords | Machine learning | |
dc.keywords | Pattern recognition | |
dc.keywords | Performance metrics | |
dc.keywords | Physical human-human | |
dc.keywords | Robot interaction | |
dc.language | English | |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | |
dc.relation.grantno | EP/S033718/1 | |
dc.relation.grantno | EP/R02572X/1 | |
dc.relation.grantno | 742782 | |
dc.relation.grantno | 117E645 | |
dc.relation.uri | http://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/9740 | |
dc.source | IEEE Transactions on Haptics | |
dc.subject | Computer science | |
dc.subject | Cybernetics | |
dc.title | A novel haptic feature set for the classification of interactive motor behaviors in collaborative object transfer | |
dc.type | Journal Article | |
dspace.entity.type | Publication | |
local.contributor.authorid | 0000-0002-6382-7334 | |
local.contributor.authorid | N/A | |
local.contributor.authorid | N/A | |
local.contributor.kuauthor | Başdoğan, Çağatay | |
local.contributor.kuauthor | Şirintuna, Doğanay | |
local.contributor.kuauthor | Al-Saadi, Zaid Rassim Mohammed | |
relation.isOrgUnitOfPublication | ba2836f3-206d-4724-918c-f598f0086a36 | |
relation.isOrgUnitOfPublication.latestForDiscovery | ba2836f3-206d-4724-918c-f598f0086a36 |
Files
Original bundle
1 - 1 of 1