Publication:
The relationship between geophysical conditions and ELF amplitude in modulated heating experiments at HAARP: modeling and experimental results

dc.contributor.coauthorJin, G.
dc.contributor.coauthorSpasojevic, M.
dc.contributor.coauthorCohen, M. B.
dc.contributor.coauthorLehtinen, N. G.
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorİnan, Umran Savaş
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2024-11-09T11:43:58Z
dc.date.issued2011
dc.description.abstractExperiments for generating extremely low frequency (ELF) radio waves using modulated HF heating of the auroral ionosphere have been conducted and refined at the High Frequency Active Auroral Research Program (HAARP) facility at Gakona, Alaska. Because this technique is dependent on strength of the naturally generated electrojet current system, the amplitude of the generated ELF changes with geophysical conditions. Past work has shown that electrojet current strength as measured by magnetometers often correlates with generated ELF amplitude, but there are periods of poor or negative correlation. We attempt to use additional diagnostics from a radar, riometer, ionosonde, and magnetometer chain to understand how ionospheric conditions affect ELF generation. We then present the results of a statistical model that shows that ELF amplitude is roughly proportional to magnetometer measurements for a fixed value of riometer absorption and that the proportionality constant decreases as riometer absorption increases. Theoretical simulations of modulated heating are conducted for a variety of ionospheric density profiles to verify that denser profiles result in smaller gains for ELF generation as a function of electrojet current at a given electric field.
dc.description.fulltextYES
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.issueA7
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipHAARP
dc.description.sponsorshipOffice of Naval Research
dc.description.sponsorshipAir Force Research Laboratory
dc.description.sponsorshipDefense Advanced Projects Research Agency, via ONR
dc.description.sponsorshipStanford Graduate Fellowship
dc.description.versionPublisher version
dc.description.volume116
dc.identifier.doi10.1029/2011JA016664
dc.identifier.eissn2169-9402
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR00615
dc.identifier.issn2169-9380
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-79960885773
dc.identifier.urihttps://hdl.handle.net/20.500.14288/378
dc.identifier.wos293341900002
dc.keywordsVlf waves
dc.keywordsRadar
dc.keywordsFrequencies
dc.keywordsIonosphere
dc.keywordsSuperdarn
dc.keywordsRadiation
dc.keywordsRegion
dc.keywordsChain
dc.language.isoeng
dc.publisherAmerican Geophysical Union (AGU)
dc.relation.grantnoN0001405C0308, N00014091
dc.relation.ispartofJournal of Geophysical Research: Space Physics
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/687
dc.subjectAstronomy and astrophysics
dc.titleThe relationship between geophysical conditions and ELF amplitude in modulated heating experiments at HAARP: modeling and experimental results
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorİnan, Umran Savaş
local.publication.orgunit1College of Engineering
local.publication.orgunit2Department of Electrical and Electronics Engineering
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
687.pdf
Size:
782.29 KB
Format:
Adobe Portable Document Format