Publication:
Polycrystalline ZrTe5 parametrized as a narrow-band-gap semiconductor for thermoelectric performance

dc.contributor.coauthorMiller, Samuel A.
dc.contributor.coauthorWitting, Ian
dc.contributor.coauthorPeng, Lintao
dc.contributor.coauthorRettie, Alexander J. E.
dc.contributor.coauthorGorai, Prashun
dc.contributor.coauthorChung, Duck Young
dc.contributor.coauthorKanatzidis, Mercouri G.
dc.contributor.coauthorGrayson, Matthew
dc.contributor.coauthorStevanovic, Vladan
dc.contributor.coauthorToberer, Eric S.
dc.contributor.coauthorSnyder, G. Jeffrey
dc.contributor.departmentDepartment of Chemistry
dc.contributor.kuauthorAydemir, Umut
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.date.accessioned2024-11-09T13:09:36Z
dc.date.issued2018
dc.description.abstractThe transition-metal pentatellurides HfTe 5 and ZrTe 5 have been studied for their exotic transport properties with much debate over the transport mechanism, band gap, and cause of the resistivity behavior, including a large low-temperature resistivity peak. Single crystals grown by the chemical-vapor-transport method have shown an n-p transition of the Seebeck coefficient at the same temperature as a peak in the resistivity. We show that behavior similar to that of single crystals can be observed in iodine-doped polycrystalline samples but that undoped polycrystalline samples exhibit drastically different properties: they are p type over the entire temperature range. Additionally, the thermal conductivity for polycrystalline samples is much lower, 1.5 Wm(-1) K-1, than previously reported for single crystals. It is found that the polycrystalline ZrTe 5 system can be modeled as a simple semiconductor with conduction and valence bands both contributing to transport, separated by a band gap of 20 meV. This model demonstrates to first order that a simple two-band model can explain the transition from n-to p-type behavior and the cause of the anomalous resistivity peak. Combined with the experimental data, the two-band model shows that carrier concentration variation is responsible for differences in behavior between samples. Using the twoband model, the thermoelectric performance at different doping levels is predicted, finding zT = 0.2 and 0.1 for p and n type, respectively, at 300 K, and zT = 0.23 and 0.32 for p and n type at 600 K. Given the reasonably high zT that is comparable in magnitude for both n and p type, a thermoelectric device with a single compound used for both legs is feasible.
dc.description.fulltextYES
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.issue1
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipNational Science Foundation Division of Materials Research (DMR)
dc.description.sponsorshipDepartment of Energy's Office of Energy Efficiency and Renewable Energy
dc.description.sponsorshipU.S. Department of Energy, Office of Science, Basic Energy Sciences
dc.description.sponsorshipAir Force Office of Scientific Research (AFOSR)
dc.description.sponsorshipU.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division
dc.description.sponsorshipMaterials Research Science and Engineering Centers (MRSEC) program of the National Science Foundation (NSF) at the Materials Research Center of Northwestern University
dc.description.sponsorshipSoft and Hybrid Nanotechnology Experimental Resource (NSF)
dc.description.versionPublisher version
dc.description.volume9
dc.identifier.doi10.1103/PhysRevApplied.9.014025
dc.identifier.eissn2331-7019
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR01443
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85041097690
dc.identifier.urihttps://hdl.handle.net/20.500.14288/2766
dc.identifier.wos423328300002
dc.keywordsTransition-metal pentatellurides
dc.keywordsThermal-conductivity
dc.keywordsElectronic-structure
dc.keywordsDimensional zrte5
dc.keywordsPhase-transition
dc.keywordsHfte5
dc.keywordsResistivity
dc.keywordsTransport
dc.keywordsPower
dc.keywordsOscillations
dc.language.isoeng
dc.publisherAmerican Physical Society (APS)
dc.relation.grantno1334713
dc.relation.grantno1334351
dc.relation.grantno1333335
dc.relation.grantnoDE-SC0001299/DE-FG02-09ER46577
dc.relation.grantnoFA9550-15-10247
dc.relation.grantnoFA9550-15-1-0377
dc.relation.grantnoDE-AC02-06CH11357
dc.relation.grantnoDMR-1121262
dc.relation.grantnoNNCI-1542205
dc.relation.ispartofPhysical Review Applied
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/8026
dc.subjectPhysics, applied
dc.titlePolycrystalline ZrTe5 parametrized as a narrow-band-gap semiconductor for thermoelectric performance
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorAydemir, Umut
local.publication.orgunit1College of Sciences
local.publication.orgunit2Department of Chemistry
relation.isOrgUnitOfPublication035d8150-86c9-4107-af16-a6f0a4d538eb
relation.isOrgUnitOfPublication.latestForDiscovery035d8150-86c9-4107-af16-a6f0a4d538eb
relation.isParentOrgUnitOfPublicationaf0395b0-7219-4165-a909-7016fa30932d
relation.isParentOrgUnitOfPublication.latestForDiscoveryaf0395b0-7219-4165-a909-7016fa30932d

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
8026.pdf
Size:
2.31 MB
Format:
Adobe Portable Document Format