Publication:
Predicting protein-protein interactions from the molecular to the proteome level

dc.contributor.coauthorTunçbağ, Nurcan
dc.contributor.departmentDepartment of Chemical and Biological Engineering
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.kuauthorKeskin, Özlem
dc.contributor.kuauthorGürsoy, Attila
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Chemical and Biological Engineering
dc.contributor.otherDepartment of Computer Engineering
dc.contributor.researchcenterThe Center for Computational Biology and Bioinformatics (CCBB)
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokid26605
dc.contributor.yokid8745
dc.date.accessioned2024-11-09T23:40:13Z
dc.date.issued2016
dc.description.abstractIdentification of protein protein interactions (PPIs) is at the center of molecular biology considering the unquestionable role of proteins in cells. Combinatorial interactions result in a repertoire of multiple functions; hence, knowledge of PPI and binding regions naturally serve to functional proteomics and drug discovery. Given experimental limitations to find all interactions in a proteome, computational prediction/modeling of protein interactions is a prerequisite to proceed on the way to complete interactions at the proteome level. This review aims to provide a background on PPIs and their types. Computational methods for PPI predictions can use a variety of biological data including sequence-, evolution-, expression-, and structure-based data. Physical and statistical modeling are commonly used to integrate these data and infer PPI predictions. We review and list the state-of-the-art methods, servers, databases, and tools for protein-protein interaction prediction.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue8
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.sponsorshipTUBITAK-Marie Curie [114C026]
dc.description.sponsorshipYoung Scientist Award Program of the Science Academy (Turkey)
dc.description.sponsorshipTUBITAK[114M196, 113E164] N.T. thanks the TUBITAK-Marie Curie Co-funded Brain Circulation Scheme (114C026) and Young Scientist Award Program of the Science Academy (Turkey) for support. O.K. and A.G. are members of the Science Academy (Turkey). We acknowledge partial funding from TUBITAKprojects (114M196 and 113E164).
dc.description.volume116
dc.identifier.doi10.1021/acs.chemrev.5b00683
dc.identifier.eissn1520-6890
dc.identifier.issn0009-2665
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-84966908145
dc.identifier.urihttp://dx.doi.org/10.1021/acs.chemrev.5b00683
dc.identifier.urihttps://hdl.handle.net/20.500.14288/13257
dc.identifier.wos375244000004
dc.keywordsComputational hot-spots
dc.keywordsWeb server
dc.keywordsInteraction networks
dc.keywordsMass-spectrometry
dc.keywordsSignaling pathways
dc.keywordsHidden components
dc.keywordsCrystal-structure
dc.keywords2-Hybrid system
dc.keywordsBinding-energy
dc.keywordsDatabase
dc.languageEnglish
dc.publisherAmer Chemical Soc
dc.sourceChemical Reviews
dc.subjectChemistry
dc.titlePredicting protein-protein interactions from the molecular to the proteome level
dc.typeReview
dspace.entity.typePublication
local.contributor.authorid0000-0002-4202-4049
local.contributor.authorid0000-0002-2297-2113
local.contributor.kuauthorKeskin, Özlem
local.contributor.kuauthorGürsoy, Attila
relation.isOrgUnitOfPublicationc747a256-6e0c-4969-b1bf-3b9f2f674289
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae

Files