Publication:
Hydrogenated amorphous silicon nitride based photonic light emitting devices

dc.contributor.departmentDepartment of Physics
dc.contributor.kuauthorSerpengüzel, Ali
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.date.accessioned2024-11-09T12:41:00Z
dc.date.issued2000
dc.description.abstractWe have observed visible photoluninescence from hydrogenated amorphous silicon nitride (a-SiNx:H) as well as the enhancement and inhibition of this photoluninescence in a microcavity formed with metallic mirrors. The a-SSJx:H was grown both with and without ammonia. The photoluminescence of the a-SSNx:H grown without ammonia is red. The photoluminescence of the a-SiNx:H grown with ammonia is blue-green. In this paper, we report on the enhancement and inhibition of the photoluminescence from a half wavelength thick dielectric a-SiNx:H microcavity. The distributed Bragg reflector mirrors were fabricated using alternating pairs of quarter wavelength thick silicon oxide and silicon nitride. The photoluminescence is enhanced by at least an order of magnitude at the dielectric a-SiNx:H microcavity resonance at 710 nn. The minimum resonance linewidth is 6 nn, which corresponds to a quality factor of 118. The maximum rejection bandwidth is 150 nm. The enhancement and inhibition of the photoluminescence is understood by the modified photon density of states of the dielectric microcavity. The linewidth of the photoluminescence is also narrowed with respect to the linewidth of the bulk a-SiNx:H, again due to the presence of the electromagnetic modes of the dielectric microcavity. The resonance enhancement and inhibition of the photoluminescence in a-SiNx:H opens up a variety of possibilities for optoelectronic applications such as color flat panel displays or active resonant cavity enhanced devices for wavelength division multiplexing.
dc.description.fulltextYES
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipN/A
dc.description.versionPublisher version
dc.identifier.doi10.1117/12.382796
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR00527
dc.identifier.isbn0-8194-3554-6
dc.identifier.issn0277-786X
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-0033746993
dc.identifier.urihttps://doi.org/10.1117/12.382796
dc.identifier.wos87781500009
dc.keywordsFabry-Perot
dc.keywordsMicrocavity
dc.keywordsDistributed Bragg reflector
dc.keywordsAmorphous silicon
dc.keywordsPhotoluminescence
dc.keywordsResonators
dc.keywordsThin films
dc.keywordsSpontaneous emission
dc.keywordsOptoelectronics
dc.keywordsPlasma enhanced chemical vapor deposition
dc.language.isoeng
dc.publisherSociety of Photo-optical Instrumentation Engineers (SPIE)
dc.relation.ispartofProceedings of SPIE
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/594
dc.subjectMaterials science
dc.subjectOptics
dc.titleHydrogenated amorphous silicon nitride based photonic light emitting devices
dc.typeConference Proceeding
dspace.entity.typePublication
local.contributor.kuauthorSerpengüzel, Ali
local.publication.orgunit1College of Sciences
local.publication.orgunit2Department of Physics
relation.isOrgUnitOfPublicationc43d21f0-ae67-4f18-a338-bcaedd4b72a4
relation.isOrgUnitOfPublication.latestForDiscoveryc43d21f0-ae67-4f18-a338-bcaedd4b72a4
relation.isParentOrgUnitOfPublicationaf0395b0-7219-4165-a909-7016fa30932d
relation.isParentOrgUnitOfPublication.latestForDiscoveryaf0395b0-7219-4165-a909-7016fa30932d

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
594.pdf
Size:
595.68 KB
Format:
Adobe Portable Document Format