Publication:
Machine learning meets with metal organic frameworks for gas storage and separation

dc.contributor.coauthorYıldırım, Ramazan
dc.contributor.departmentDepartment of Chemical and Biological Engineering
dc.contributor.kuauthorKeskin, Seda
dc.contributor.kuauthorAltıntaş, Çiğdem
dc.contributor.kuauthorAltundal, Ömer Faruk
dc.contributor.kuprofileResearcher
dc.contributor.otherDepartment of Chemical and Biological Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.yokid40548
dc.contributor.yokidN/A
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T11:40:01Z
dc.date.issued2021
dc.description.abstractThe acceleration in design of new metal organic frameworks (MOFs) has led scientists to focus on high-throughput computational screening (HTCS) methods to quickly assess the promises of these fascinating materials in various applications. HTCS studies provide a massive amount of structural property and performance data for MOFs, which need to be further analyzed. Recent implementation of machine learning (ML), which is another growing field in research, to HTCS of MOFs has been very fruitful not only for revealing the hidden structure-performance relationships of materials but also for understanding their performance trends in different applications, specifically for gas storage and separation. In this review, we highlight the current state of the art in ML-assisted computational screening of MOFs for gas storage and separation and address both the opportunities and challenges that are emerging in this new field by emphasizing how merging of ML and MOF simulations can be useful.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue5
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuEU
dc.description.sponsorshipEuropean Union (EU)
dc.description.sponsorshipHorizon 2020
dc.description.sponsorshipEuropean Research Council (ERC)
dc.description.sponsorshipResearch and Innovation Program
dc.description.sponsorshipERC-2017-Starting Grant
dc.description.sponsorshipCOSMOS
dc.description.versionPublisher version
dc.description.volume61
dc.formatpdf
dc.identifier.doi10.1021/acs.jcim.1c00191
dc.identifier.eissn1549-960X
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR02881
dc.identifier.issn1549-9596
dc.identifier.linkhttps://doi.org/10.1021/acs.jcim.1c00191
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-85106519072
dc.identifier.urihttps://hdl.handle.net/20.500.14288/185
dc.identifier.wos656118800004
dc.keywordsMetal-organic frameworks
dc.keywordsMachine learning
dc.keywordsHigh-throughput computational screening
dc.keywordsGas storage
dc.keywordsGas separation
dc.keywordsStructure-performance relationships
dc.keywordsModeling
dc.keywordsMaterial design
dc.languageEnglish
dc.publisherAmerican Chemical Society (ACS)
dc.relation.grantno756489
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/9528
dc.sourceJournal of Chemical Information and Modeling
dc.subjectPharmacology
dc.subjectPharmacy
dc.subjectChemistry
dc.subjectComputer science
dc.subjectInformation systems
dc.titleMachine learning meets with metal organic frameworks for gas storage and separation
dc.typeReview
dspace.entity.typePublication
local.contributor.authorid0000-0001-5968-0336
local.contributor.authoridN/A
local.contributor.authoridN/A
local.contributor.kuauthorKeskin, Seda
local.contributor.kuauthorAltıntaş, Çiğdem
local.contributor.kuauthorAltundal, Ömer Faruk
relation.isOrgUnitOfPublicationc747a256-6e0c-4969-b1bf-3b9f2f674289
relation.isOrgUnitOfPublication.latestForDiscoveryc747a256-6e0c-4969-b1bf-3b9f2f674289

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
9528.pdf
Size:
3.62 MB
Format:
Adobe Portable Document Format