Publication:
Mesh learning approach for brain data modeling

dc.contributor.coauthorFirat, Orhan
dc.contributor.coauthorÖzay, Mete
dc.contributor.coauthorÖnal, Itir
dc.contributor.coauthorVural, Fatoş T. Yarman
dc.contributor.departmentDepartment of Psychology
dc.contributor.kuauthorÖztekin, İlke
dc.contributor.schoolcollegeinstituteCollege of Social Sciences and Humanities
dc.date.accessioned2024-11-09T23:46:03Z
dc.date.issued2012
dc.description.abstractThe major goal of this study is to model the memory process using neural activation patterns in the brain. To achieve this goal, neural activation was acquired using functional Magnetic Resonance Imaging (fMRI) during memory encoding and retrieval. fMRI are known are trained for each class using a learning system. The most important component of this learning system is feature space. In this project, an original feature space for the fMRI data is proposed. This feature space is defined by a mesh network which models the relationship between voxels. In the suggested mesh network, the distance between voxels is determined by using physical and functional neighborhood concepts. For the functional neighborhood, the similarities between the time series, gained from voxels, are measured. With the proposed method, a data set with 10 classes is used for the encoding and retrieval processes, and the classifier is trained with the learning algorithms in order to predict the class the data belongs.
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.identifier.doi10.1109/SIU.2012.6204798
dc.identifier.isbn9781-4673-0056-8
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-84863442293
dc.identifier.urihttps://doi.org/10.1109/SIU.2012.6204798
dc.identifier.urihttps://hdl.handle.net/20.500.14288/13910
dc.keywordsBrain data
dc.keywordsData sets
dc.keywordsFeature space
dc.keywordsfMRI data
dc.keywordsFunctional magnetic resonance imaging
dc.keywordsLearning approach
dc.keywordsMemory encoding
dc.keywordsMesh network
dc.keywordsNeural activation
dc.keywordsNeural activation patterns
dc.keywordsRetrieval process
dc.keywordsLearning algorithms
dc.keywordsLearning systems
dc.keywordsMagnetic resonance imaging
dc.keywordsSignal processing
dc.keywordsEncoding (symbols)
dc.language.isotur
dc.publisherIEEE
dc.relation.ispartof2012 20th Signal Processing and Communications Applications Conference, SIU 2012, Proceedings
dc.subjectVisual cortex
dc.subjectFunctional magnetic resonance imaging
dc.subjectBrain mapping
dc.titleMesh learning approach for brain data modeling
dc.title.alternativeBeyi̇n datası modellemesi̇nde örgü öǧrenme yaklaşımı
dc.typeConference Proceeding
dspace.entity.typePublication
local.contributor.kuauthorÖztekin, İlke
local.publication.orgunit1College of Social Sciences and Humanities
local.publication.orgunit2Department of Psychology
relation.isOrgUnitOfPublicationd5fc0361-3a0a-4b96-bf2e-5cd6b2b0b08c
relation.isOrgUnitOfPublication.latestForDiscoveryd5fc0361-3a0a-4b96-bf2e-5cd6b2b0b08c
relation.isParentOrgUnitOfPublication3f7621e3-0d26-42c2-af64-58a329522794
relation.isParentOrgUnitOfPublication.latestForDiscovery3f7621e3-0d26-42c2-af64-58a329522794

Files