Publication:
A micropatterned human-specific neuroepithelial tissue for modeling gene and drug-induced neurodevelopmental defects

dc.contributor.coauthorSahni, Geetika
dc.contributor.coauthorChang, Shu-Yung
dc.contributor.coauthorMeng, Jeremy Teo Choon
dc.contributor.coauthorTan, Jerome Zu Yao
dc.contributor.coauthorFatien, Jean Jacques Clement
dc.contributor.coauthorBonnard, Carine
dc.contributor.coauthorUtami, Kagistia Hana
dc.contributor.coauthorChan, Puck Wee
dc.contributor.coauthorTan, Thong Teck
dc.contributor.coauthorAltunoglu, Umut
dc.contributor.coauthorPouladi, Mahmoud
dc.contributor.coauthorToh, Yi-Chin
dc.contributor.kuauthorKayserili, Hülya
dc.contributor.kuauthorReversade, Bruno
dc.contributor.kuprofileFaculty Member
dc.contributor.schoolcollegeinstituteSchool of Medicine
dc.contributor.yokid7945
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T11:46:40Z
dc.date.issued2021
dc.description.abstractThe generation of structurally standardized human pluripotent stem cell (hPSC)-derived neural embryonic tissues has the potential to model genetic and environmental mediators of early neurodevelopmental defects. Current neural patterning systems have so far focused on directing cell fate specification spatio-temporally but not morphogenetic processes. Here, the formation of a structurally reproducible and highly-organized neuroepithelium (NE) tissue is directed from hPSCs, which recapitulates morphogenetic cellular processes relevant to early neurulation. These include having a continuous, polarized epithelium and a distinct invagination-like folding, where primitive ectodermal cells undergo E-to-N-cadherin switching and apical constriction as they acquire a NE fate. This is accomplished by spatio-temporal patterning of the mesoendoderm, which guides the development and self-organization of the adjacent primitive ectoderm into the NE. It is uncovered that TGF beta signaling emanating from endodermal cells support tissue folding of the prospective NE. Evaluation of NE tissue structural dysmorphia, which is uniquely achievable in the model, enables the detection of apical constriction and cell adhesion dysfunctions in patient-derived hPSCs as well as differentiating between different classes of neural tube defect-inducing drugs.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue5
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipSingapore Ministry of Education
dc.description.sponsorshipN.1 Institute for Health
dc.description.sponsorshipNUS Research Scholarships
dc.description.versionPublisher version
dc.description.volume8
dc.formatpdf
dc.identifier.doi10.1002/advs.202001100
dc.identifier.eissn2198-3844
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR02628
dc.identifier.linkhttps://doi.org/10.1002/advs.202001100
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85099096928
dc.identifier.urihttps://hdl.handle.net/20.500.14288/534
dc.identifier.wos605171800001
dc.keywordsHuman pluripotent stem cells
dc.keywordsMicropatterning
dc.keywordsMorphogenesis
dc.keywordsNeurodevelopmental defects
dc.keywordsNeuroepithelium
dc.languageEnglish
dc.publisherWiley
dc.relation.grantnoR-397-000-215-112
dc.relation.grantnoR-397-000-253-112
dc.relation.grantnoR-719-004-100-305
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/9276
dc.sourceAdvanced Science
dc.subjectChemistry
dc.subjectNanoscience and nanotechnology
dc.subjectMaterials science
dc.titleA micropatterned human-specific neuroepithelial tissue for modeling gene and drug-induced neurodevelopmental defects
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0003-0376-499X
local.contributor.authoridN/A
local.contributor.kuauthorKayserili, Hülya
local.contributor.kuauthorReversade, Bruno

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
9276.pdf
Size:
12.23 MB
Format:
Adobe Portable Document Format