Publication:
Deep photonic network platform enabling arbitrary and broadband optical functionality

Thumbnail Image

Program

KU Authors

Co-Authors

 

Advisor

Publication Date

Language

en

Journal Title

Journal ISSN

Volume Title

Abstract

Expanding applications in optical communications, computing, and sensing continue to drive the need for high-performance integrated photonic components. Designing these on-chip systems with arbitrary functionality requires beyond what is possible with physical intuition, for which machine learning-based methods have recently become popular. However, computational demands for physically accurate device simulations present critical challenges, significantly limiting scalability and design flexibility of these methods. Here, we present a highly-scalable, physics-informed design platform for on-chip optical systems with arbitrary functionality, based on deep photonic networks of custom-designed Mach-Zehnder interferometers. Leveraging this platform, we demonstrate ultra-broadband power splitters and a spectral duplexer, each designed within two minutes. The devices exhibit state-of-the-art experimental performance with insertion losses below 0.66 dB, and 1-dB bandwidths exceeding 120 nm. This platform provides a tractable path towards systematic, large-scale photonic system design, enabling custom power, phase, and dispersion profiles for high-throughput communications, quantum information processing, and medical/biological sensing applications. An efficient and physically accurate platform is required to rapidly design high-performance integrated photonic devices. Here, the authors present a scalable framework for creating on-chip optical systems with complex and arbitrary functionality.

Source:

Nature Communications

Publisher:

Nature Portfolio

Keywords:

Subject

Optical electronics and engineering, Silicon photonics

Citation

Endorsement

Review

Supplemented By

Referenced By

Copyrights Note

4

Views

2

Downloads

View PlumX Details