Publication: Fast and accurate modeling of protein-protein interactions by combining template-interface-based docking with flexible refinement
Program
KU Authors
Co-Authors
Nussinov, Ruth
Advisor
Publication Date
2012
Language
English
Type
Journal Article
Journal Title
Journal ISSN
Volume Title
Abstract
The similarity between folding and binding led us to posit the concept that the number of proteinprotein interface motifs in nature is limited, and interacting protein pairs can use similar interface architectures repeatedly, even if their global folds completely vary. Thus, known proteinprotein interface architectures can be used to model the complexes between two target proteins on the proteome scale, even if their global structures differ. This powerful concept is combined with a flexible refinement and global energy assessment tool. The accuracy of the method is highly dependent on the structural diversity of the interface architectures in the template dataset. Here, we validate this knowledge-based combinatorial method on the Docking Benchmark and show that it efficiently finds high-quality models for benchmark complexes and their binding regions even in the absence of template interfaces having sequence similarity to the targets. Compared to classical docking, it is computationally faster; as the number of target proteins increases, the difference becomes more dramatic. Further, it is able to distinguish binders from nonbinders. These features allow performing large-scale network modeling. The results on an independent target set (proteins in the p53 molecular interaction map) show that current method can be used to predict whether a given protein pair interacts. Overall, while constrained by the diversity of the template set, this approach efficiently produces high-quality models of proteinprotein complexes. We expect that with the growing number of known interface architectures, this type of knowledge-based methods will be increasingly used by the broad proteomics community.
Description
Source:
Proteins-Structure Function and Bioinformatics
Publisher:
Wiley
Keywords:
Subject
Biochemistry, Molecular biology, Biophysics