Publication:
Automatic detection of road types from the third military mapping survey of Austria-Hungary historical map series with deep convolutional neural networks

dc.contributor.departmentDepartment of History
dc.contributor.kuauthorKabadayı, Mustafa Erdem
dc.contributor.kuauthorCan, Yekta Said
dc.contributor.kuauthorGerrits, Petrus Johannes
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of History
dc.contributor.schoolcollegeinstituteCollege of Social Sciences and Humanities
dc.contributor.yokid33267
dc.contributor.yokidN/A
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T13:10:48Z
dc.date.issued2021
dc.description.abstractWith the increased amount of digitized historical documents, information extraction from them gains pace. Historical maps contain valuable information about historical, geographical and economic aspects of an era. Retrieving information from historical maps is more challenging than processing modern maps due to lower image quality, degradation of documents and the massive amount of non-annotated digital map archives. Convolutional Neural Networks (CNN) solved many image processing challenges with great success, but they require a vast amount of annotated data. For historical maps, this means an unprecedented scale of manual data entry and annotation. In this study, we first manually annotated the Third Military Mapping Survey of Austria-Hungary historical map series conducted between 1884 and 1918 and made them publicly accessible. We recognized different road types and their pixel-wise positions automatically by using a CNN architecture and achieved promising results.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuEU
dc.description.sponsorshipEuropean Union (EU)
dc.description.sponsorshipHorizon 2020
dc.description.sponsorshipEuropean Research Council (ERC)
dc.description.sponsorshipResearch and innovation Programme
dc.description.sponsorshipProject: ""Industrialisation and Urban Growth from the mid-nineteenth century Ottoman Empire to Contemporary Turkey in a Comparative Perspective, 1850-2000""
dc.description.sponsorshipUrbanOccupationsOETR
dc.description.versionPublisher version
dc.description.volume9
dc.formatpdf
dc.identifier.doi10.1109/ACCESS.2021.3074897
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR03246
dc.identifier.issn2169-3536
dc.identifier.linkhttps://doi.org/10.1109/ACCESS.2021.3074897
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-85104676727
dc.identifier.urihttps://hdl.handle.net/20.500.14288/2830
dc.identifier.wos645853900001
dc.keywordsConvolutional neural networks
dc.keywordsDigital humanities
dc.keywordsDigital preservation
dc.keywordsDocument analysis
dc.keywordsGeospatial analysis
dc.keywordsGeospatial artificial intelligence
dc.keywordsImage processing
dc.keywordsRoad type detection
dc.languageEnglish
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.grantno679097
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/10028
dc.sourceIEEE Access
dc.subjectComputer science
dc.subjectEngineering
dc.subjectTelecommunications
dc.titleAutomatic detection of road types from the third military mapping survey of Austria-Hungary historical map series with deep convolutional neural networks
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0003-3206-0190
local.contributor.authoridN/A
local.contributor.authoridN/A
local.contributor.kuauthorKabadayı, Mustafa Erdem
local.contributor.kuauthorCan, Yekta Said
local.contributor.kuauthorGerrits, Petrus Johannes
relation.isOrgUnitOfPublicationbe8432df-d124-44c3-85b4-be586c2db8a3
relation.isOrgUnitOfPublication.latestForDiscoverybe8432df-d124-44c3-85b4-be586c2db8a3

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
10028.pdf
Size:
4.66 MB
Format:
Adobe Portable Document Format