Publication:
Mesoporous carbon aerogel supported PtCu bimetallic nanoparticles via supercritical deposition and their dealloying and electrocatalytic behaviour

dc.contributor.coauthorYu, Haibo
dc.contributor.coauthorKızılel, Rıza
dc.contributor.coauthorAindow, Mark
dc.contributor.departmentN/A
dc.contributor.departmentDepartment of Chemical and Biological Engineering
dc.contributor.departmentDepartment of Chemical and Biological Engineering
dc.contributor.kuauthorBarım, Şansım Bengisu
dc.contributor.kuauthorBozbağ, Selmi Erim
dc.contributor.kuauthorErkey, Can
dc.contributor.kuprofileResearcher
dc.contributor.kuprofileResearcher
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Chemical and Biological Engineering
dc.contributor.schoolcollegeinstituteN/A
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokidN/A
dc.contributor.yokidN/A
dc.contributor.yokid29633
dc.date.accessioned2024-11-10T00:01:00Z
dc.date.issued2018
dc.description.abstractMesoporous carbon aerogel (CA) supported PtCu bimetallic nanoparticles were prepared via a sequential supercritical deposition (SCD) method using supercritical carbon dioxide (scCO(2)). The effects of deposition order of the metal, annealing temperature and metal composition on the average PtCu particle size, size distribution and dispersion were investigated. Four sets of PtCu/CA samples were prepared with two Pt:Cu molar ratios (1:1 and 1:3) and with two different deposition orders (i.e. either Pt or Cu first). X-ray diffraction and electron microscopy data showed that all of the as-prepared samples formed homogeneously distributed disordered PtCu alloy nanoparticles with narrow particle size distributions on the CA support. Increasing annealing temperature in the range 600-950 degrees C increased the average particle size from 1.8 nm to 4.5 nm and resulted in the elimination of separate Cu nanoparticles on the CA surface. The dealloying of the supported PtCu nanoparticles were carried out by cyclic voltammetry and the activity of the dealloyed nanoparticles (after 300 potential cycles) towards the oxygen reduction reaction (ORR) was investigated using rotating disc electrode (RDE) experiments. During dealloying, peaks associated with bulk dissolution and deposition of Cu and dissolution and re-deposition of Cu from the alloyed PtCu nanoparticles were observed at initial cycles along with peaks associated with creation of new Pt sites. Supported nanoparticles with Pt: Cu molar ratios of 1:1 and 1:3 which were prepared by deposition of Cu first had low activities towards ORR after dealloying. on the contrary, nanoparticles prepared by depositing Pt first exhibited promising electrocatalytic activities after dealloying. Samples with a Pt: Cu molar ratio of 1:3 showed higher activities than those with a molar ratio of 1:1. An enhanced ESA of 137 m(2)/g and dealloying induced enhanced mass activity of 0.123 A/mg(Pt) was obtained using the sample with a Pt: Cu molar ratio of 1:3, which was annealed at 800 degrees C. on the other hand, the same sample annealed at 950 degrees C had the highest specific activity of 0.165 mA/cm(2).
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipTUBITAK[213M024]
dc.description.sponsorshipKoc University Surface Science and Technologies Center (KUYTAM)
dc.description.sponsorshipKoc University TUPRAS Energy Center (KUTEM) We are grateful for the financial support of TUBITAKwith grant number 213M024. We also acknowledge the support of Koc University Surface Science and Technologies Center (KUYTAM) and Koc University TUPRAS Energy Center (KUTEM). Some of the microscopy studies described in this paper were performed using the facilities in the UConn/FEI Center for Advanced Microscopy and Materials Analysis (CAMMA).
dc.description.volume310
dc.identifier.doi10.1016/j.cattod.2017.09.023
dc.identifier.eissn1873-4308
dc.identifier.issn0920-5861
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85029493470
dc.identifier.urihttp://dx.doi.org/10.1016/j.cattod.2017.09.023
dc.identifier.urihttps://hdl.handle.net/20.500.14288/15889
dc.identifier.wos432489700021
dc.keywordsNanoalloys
dc.keywordsSupercritical deposition
dc.keywordsCarbon aerogel
dc.keywordsPtCu
dc.keywordsPEM Fuel Cell
dc.keywordsOxygen reduction
dc.languageEnglish
dc.publisherElsevier Science Bv
dc.sourceCatalysis Today
dc.subjectChemistry, applied
dc.subjectChemistry, physical
dc.subjectEngineering, chemical
dc.titleMesoporous carbon aerogel supported PtCu bimetallic nanoparticles via supercritical deposition and their dealloying and electrocatalytic behaviour
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authorid0000-0003-2291-6223
local.contributor.authorid0000-0003-4471-2301
local.contributor.authorid0000-0001-6539-7748
local.contributor.kuauthorBarım, Şansım Bengisu
local.contributor.kuauthorBozbağ, Selmi Erim
local.contributor.kuauthorErkey, Can
relation.isOrgUnitOfPublicationc747a256-6e0c-4969-b1bf-3b9f2f674289
relation.isOrgUnitOfPublication.latestForDiscoveryc747a256-6e0c-4969-b1bf-3b9f2f674289

Files