Publication:
A hybrid autoencoder and index modulation framework for OTFS modulation

dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.departmentCoreLab (Communications Research and Innovation Laboratory)
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteLaboratory
dc.date.accessioned2025-03-06T21:00:30Z
dc.date.issued2025
dc.description.abstractThis paper presents an innovative approach to orthogonal time frequency space (OTFS) modulation by integrating autoencoder-based enhanced (AEE) joint delay-Doppler index modulation (JDDIM) techniques. The proposed AEE-JDDIM-OTFS framework leverages deep learning to optimize the mapping and demapping processes, significantly improving spectral and energy efficiency in high-mobility communication scenarios. The system's performance is further enhanced by the introduction of a low-complexity greedy detector that maintains robust detection accuracy, even under imperfect channel state information (CSI) conditions. Extensive simulation results demonstrate that the proposed scheme achieves superior bit error rate (BER) performance compared to conventional OTFS and other OTFS-based modulation schemes, even in imperfect channel state information situations. The findings suggest that the AEE-JDDIM-OTFS framework offers a practical, low-complexity solution with promising potential for next-generation wireless communication systems.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorsThis work is supported by TÜBİTAK under Grant Number 121C254
dc.identifier.doi10.1007/s11760-024-03688-y
dc.identifier.eissn1863-1711
dc.identifier.grantnoTÜBİTAK [121C254]
dc.identifier.issn1863-1703
dc.identifier.issue1
dc.identifier.quartileQ3
dc.identifier.scopus2-s2.0-85211154590
dc.identifier.urihttps://doi.org/10.1007/s11760-024-03688-y
dc.identifier.urihttps://hdl.handle.net/20.500.14288/27905
dc.identifier.volume19
dc.identifier.wos1367069300003
dc.keywordsAutoencoder (AE)
dc.keywordsDelay-Doppler communication
dc.keywordsDeep learning
dc.keywordsOTFS
dc.keywordsIndex modulation (IM)
dc.keywordsSubframe
dc.language.isoeng
dc.publisherSpringer
dc.sourceSignal, Image and Video Processing
dc.subjectEngineering, electrical and electronic
dc.subjectImaging science and photographic technology
dc.titleA hybrid autoencoder and index modulation framework for OTFS modulation
dc.typeJournal article
dspace.entity.typePublication
local.contributor.kuauthorBaşar, Ertuğrul
local.contributor.kuauthorTek, Yusuf İslam
local.contributor.kuauthorDoğukan, Ali Tuğberk
local.contributor.kuauthorGevez, Yarkın
local.contributor.kuauthorPıhtılı, Mehmet Ertuğ
local.publication.orgunit1College of Engineering
local.publication.orgunit1Laboratory
local.publication.orgunit2Department of Electrical and Electronics Engineering
local.publication.orgunit2CoreLab (Communications Research and Innovation Laboratory)
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication65c7c6b7-d90c-4bb1-a1cb-054f13135330
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication20385dee-35e7-484b-8da6-ddcc08271d96
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files