Publication: A hybrid autoencoder and index modulation framework for OTFS modulation
dc.contributor.department | Department of Electrical and Electronics Engineering | |
dc.contributor.department | CoreLab (Communications Research and Innovation Laboratory) | |
dc.contributor.schoolcollegeinstitute | College of Engineering | |
dc.contributor.schoolcollegeinstitute | Laboratory | |
dc.date.accessioned | 2025-03-06T21:00:30Z | |
dc.date.issued | 2025 | |
dc.description.abstract | This paper presents an innovative approach to orthogonal time frequency space (OTFS) modulation by integrating autoencoder-based enhanced (AEE) joint delay-Doppler index modulation (JDDIM) techniques. The proposed AEE-JDDIM-OTFS framework leverages deep learning to optimize the mapping and demapping processes, significantly improving spectral and energy efficiency in high-mobility communication scenarios. The system's performance is further enhanced by the introduction of a low-complexity greedy detector that maintains robust detection accuracy, even under imperfect channel state information (CSI) conditions. Extensive simulation results demonstrate that the proposed scheme achieves superior bit error rate (BER) performance compared to conventional OTFS and other OTFS-based modulation schemes, even in imperfect channel state information situations. The findings suggest that the AEE-JDDIM-OTFS framework offers a practical, low-complexity solution with promising potential for next-generation wireless communication systems. | |
dc.description.indexedby | WoS | |
dc.description.indexedby | Scopus | |
dc.description.publisherscope | International | |
dc.description.sponsoredbyTubitakEu | TÜBİTAK | |
dc.description.sponsors | This work is supported by TÜBİTAK under Grant Number 121C254 | |
dc.identifier.doi | 10.1007/s11760-024-03688-y | |
dc.identifier.eissn | 1863-1711 | |
dc.identifier.grantno | TÜBİTAK [121C254] | |
dc.identifier.issn | 1863-1703 | |
dc.identifier.issue | 1 | |
dc.identifier.quartile | Q3 | |
dc.identifier.scopus | 2-s2.0-85211154590 | |
dc.identifier.uri | https://doi.org/10.1007/s11760-024-03688-y | |
dc.identifier.uri | https://hdl.handle.net/20.500.14288/27905 | |
dc.identifier.volume | 19 | |
dc.identifier.wos | 1367069300003 | |
dc.keywords | Autoencoder (AE) | |
dc.keywords | Delay-Doppler communication | |
dc.keywords | Deep learning | |
dc.keywords | OTFS | |
dc.keywords | Index modulation (IM) | |
dc.keywords | Subframe | |
dc.language.iso | eng | |
dc.publisher | Springer | |
dc.source | Signal, Image and Video Processing | |
dc.subject | Engineering, electrical and electronic | |
dc.subject | Imaging science and photographic technology | |
dc.title | A hybrid autoencoder and index modulation framework for OTFS modulation | |
dc.type | Journal article | |
dspace.entity.type | Publication | |
local.contributor.kuauthor | Başar, Ertuğrul | |
local.contributor.kuauthor | Tek, Yusuf İslam | |
local.contributor.kuauthor | Doğukan, Ali Tuğberk | |
local.contributor.kuauthor | Gevez, Yarkın | |
local.contributor.kuauthor | Pıhtılı, Mehmet Ertuğ | |
local.publication.orgunit1 | College of Engineering | |
local.publication.orgunit1 | Laboratory | |
local.publication.orgunit2 | Department of Electrical and Electronics Engineering | |
local.publication.orgunit2 | CoreLab (Communications Research and Innovation Laboratory) | |
relation.isOrgUnitOfPublication | 21598063-a7c5-420d-91ba-0cc9b2db0ea0 | |
relation.isOrgUnitOfPublication | 65c7c6b7-d90c-4bb1-a1cb-054f13135330 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 21598063-a7c5-420d-91ba-0cc9b2db0ea0 | |
relation.isParentOrgUnitOfPublication | 8e756b23-2d4a-4ce8-b1b3-62c794a8c164 | |
relation.isParentOrgUnitOfPublication | 20385dee-35e7-484b-8da6-ddcc08271d96 | |
relation.isParentOrgUnitOfPublication.latestForDiscovery | 8e756b23-2d4a-4ce8-b1b3-62c794a8c164 |