Publication:
LuxTrack: activity inference attacks via smartphone ambient light sensors and countermeasures

dc.contributor.coauthorSeyedkazemi, Seyedpayam
dc.contributor.coauthorSaygın, Yücel
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.kuauthorGürsoy, Mehmet Emre
dc.contributor.otherDepartment of Computer Engineering
dc.contributor.researchcenter 
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.unit 
dc.date.accessioned2024-12-29T09:37:45Z
dc.date.issued2024
dc.description.abstractAmbient light sensors (ALSs) are integrated into mobile devices to enable various functionalities, such as automatic adjustment of screen brightness and background color. ALSs can be used to record the light intensity in the surrounding environment without requiring permission from the user. However, this ability raises novel privacy risks. In this article, we propose LuxTrack, a side-channel privacy attack that uses the ALS of a smartphone to infer the user's activity on a nearby laptop using the light emitted from the laptop screen. To demonstrate LuxTrack, we developed an Android app that records the light intensity data from the ALS of a mobile device, and used this app to create an ALS light intensity data set in a controlled environment with real human subjects. From this data set, LuxTrack extracts a total of 187 features under six categories and trains six different machine learning models for activity inference. Experiments show that LuxTrack can achieve up to 80% accuracy in inferring the sites/apps the user is viewing on their laptop. We then propose three countermeasures against LuxTrack: 1) binning;2) smoothing;and 3) noise addition. We demonstrate that while these countermeasures are effective in reducing attack accuracy, they also yield a reduction in the accuracy of legitimate tasks (e.g., adjusting screen background color). By conducting a tradeoff analysis between the attack accuracy and legitimate task accuracy, we show that the choice of the right countermeasure and parameters can enable the reduction of attack accuracy to below 30% while only incurring 3% loss in legitimate task accuracy. © 2014 IEEE.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue17
dc.description.openaccess 
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsors 
dc.description.volume11
dc.identifier.doi10.1109/JIOT.2024.3406208
dc.identifier.eissn 
dc.identifier.issn2327-4662
dc.identifier.link 
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85194844876
dc.identifier.urihttps://doi.org/10.1109/JIOT.2024.3406208
dc.identifier.urihttps://hdl.handle.net/20.500.14288/22476
dc.identifier.wos1300634000052
dc.keywordsAmbient light sensor (ALS)
dc.keywordsMachine learning (ML)
dc.keywordsMobile privacy
dc.keywordsSecurity
dc.keywordsSide-channel attack
dc.languageen
dc.publisherIEEE-Inst Electrical Electronics Engineers Inc
dc.relation.grantno 
dc.rights 
dc.sourceIEEE Internet of Things Journal
dc.subjectComputer science
dc.titleLuxTrack: activity inference attacks via smartphone ambient light sensors and countermeasures
dc.typeJournal article
dc.type.other 
dspace.entity.typePublication
local.contributor.kuauthorGürsoy, Mehmet Emre
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae

Files