Publication:
Janus microparticles-based targeted and spatially-controlled piezoelectric neural stimulation via low-intensity focused ultrasound

dc.contributor.coauthorHan, Mertcan
dc.contributor.coauthorYıldız, Erdost
dc.contributor.coauthorBozuyük, Uğur
dc.contributor.coauthorAydın, Aslı
dc.contributor.coauthorYu, Yan
dc.contributor.coauthorBhargava, Aarushi
dc.contributor.coauthorKaraz, Selcan
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.kuauthorSitti, Metin
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2024-12-29T09:39:00Z
dc.date.issued2024
dc.description.abstractElectrical stimulation is a fundamental tool in studying neural circuits, treating neurological diseases, and advancing regenerative medicine. Injectable, free-standing piezoelectric particle systems have emerged as non-genetic and wireless alternatives for electrode-based tethered stimulation systems. However, achieving cell-specific and high-frequency piezoelectric neural stimulation remains challenging due to high-intensity thresholds, non-specific diffusion, and internalization of particles. Here, we develop cell-sized 20 mu m-diameter silica-based piezoelectric magnetic Janus microparticles (PEMPs), enabling clinically-relevant high-frequency neural stimulation of primary neurons under low-intensity focused ultrasound. Owing to its functionally anisotropic design, half of the PEMP acts as a piezoelectric electrode via conjugated barium titanate nanoparticles to induce electrical stimulation, while the nickel-gold nanofilm-coated magnetic half provides spatial and orientational control on neural stimulation via external uniform rotating magnetic fields. Furthermore, surface functionalization with targeting antibodies enables cell-specific binding/targeting and stimulation of dopaminergic neurons. Taking advantage of such functionalities, the PEMP design offers unique features towards wireless neural stimulation for minimally invasive treatment of neurological diseases. Wireless and localized stimulation of neural cells remains challenging. Here, the authors propose piezoelectric magnetic Janus microparticles that can target and stimulate neurons under low-intensity ultrasound through voltage-gated ion channels.
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue1
dc.description.openaccessgold
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipThe authors thank Muhammad Turab Ali Khan for the discussions and critical reading of the manuscript. We also thank Anitha Shiva for TEM and SEM-EDX imaging. This work was funded by the Max Planck Society and German Research Foundation (Deutsche Forschungsgemeinschaft; DFG) within the Priority Program 2311, grant number 465186293. E.Y. received funding from the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement number: 101059593.
dc.description.volume15
dc.identifier.doi10.1038/s41467-024-46245-4
dc.identifier.eissn2041-1723
dc.identifier.issn2041-1723
dc.identifier.link 
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85186876618
dc.identifier.urihttps://doi.org/10.1038/s41467-024-46245-4
dc.identifier.urihttps://hdl.handle.net/20.500.14288/22883
dc.identifier.wos1180394600025
dc.keywordsAnisotropy
dc.keywordsAntibodies
dc.keywordsDopaminergic neurons
dc.keywordsLight
dc.keywordsUltrasonography
dc.language.isoeng
dc.publisherNature Portfolio
dc.relation.grantnoMax Planck Society
dc.relation.grantnoGerman Research Foundation (Deutsche Forschungsgemeinschaft) [2311, 465186293]
dc.relation.grantnoEuropean Union [101059593]
dc.relation.ispartofNature Communications
dc.rights 
dc.subjectGait and posture
dc.subjectRetinal prosthesis
dc.titleJanus microparticles-based targeted and spatially-controlled piezoelectric neural stimulation via low-intensity focused ultrasound
dc.typeJournal Article
dc.type.other 
dspace.entity.typePublication
local.contributor.kuauthorSitti, Metin
local.publication.orgunit1College of Engineering
local.publication.orgunit2Department of Mechanical Engineering
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
IR04955.pdf
Size:
6.61 MB
Format:
Adobe Portable Document Format