Publication: Steady state entanglement of distant nitrogen-vacancy centers in a coherent thermal magnon bath
dc.contributor.coauthor | Köse, Emre | |
dc.contributor.department | Department of Electrical and Electronics Engineering | |
dc.contributor.department | Department of Physics | |
dc.contributor.department | Graduate School of Sciences and Engineering | |
dc.contributor.department | KUYTAM (Koç University Surface Science and Technology Center) | |
dc.contributor.kuauthor | Müstecaplıoğlu, Özgür Esat | |
dc.contributor.kuauthor | Onbaşlı, Mehmet Cengiz | |
dc.contributor.kuauthor | Yağan, Rawana | |
dc.contributor.kuauthor | Ullah, Kamran | |
dc.contributor.schoolcollegeinstitute | College of Engineering | |
dc.contributor.schoolcollegeinstitute | College of Sciences | |
dc.contributor.schoolcollegeinstitute | GRADUATE SCHOOL OF SCIENCES AND ENGINEERING | |
dc.contributor.schoolcollegeinstitute | Research Center | |
dc.date.accessioned | 2024-11-09T12:14:20Z | |
dc.date.issued | 2022 | |
dc.description.abstract | We investigate steady state entanglement (SSE) between two nitrogen-vacancy (NV) center defects in a diamond host on an ultrathin yttrium iron garnet (YIG) strip. We determine the dephasing and dissipative interactions of the qubits with the quanta of spin waves (magnon bath) in the YIG depending on the qubit positions on the strip. We show that the magnon's dephasing effect can be eliminated, and we can transform the bath into a multimode displaced thermal state using external magnetic fields. Entanglement dynamics of the qubits in such a displaced thermal bath have been analyzed by deriving and solving the master equation. An additional electric field is considered to engineer the magnon dispersion relation at the band edge to control the Markovian character of the open system dynamics. We determine the optimum geometrical parameters of the system of distant qubits and the YIG strip to get SSE. Furthermore, parameter regimes for which the shared displaced magnon bath can sustain significant SSE against the local dephasing and decoherence of NV centers to their nuclear spin environments have been determined. Along with SSE, we investigate the steady state coherence (SSC) and explain the physical mechanism of how delayed SSE appears following a rapid generation and sudden death of entanglement using the interplay of decoherence-free subspace states, system geometry, displacement of the thermal bath, and enhancement of the qubit dissipation near the magnon band edge. A nonmonotonic relation between bath coherence and SSE is found, and critical coherence for maximum SSE is determined. Our results illuminate the efficient use of system geometry, band edge in bath spectrum, and reservoir coherence to engineer system-reservoir interactions for robust SSE and SSC. | |
dc.description.fulltext | YES | |
dc.description.indexedby | WOS | |
dc.description.indexedby | Scopus | |
dc.description.issue | 2 | |
dc.description.openaccess | YES | |
dc.description.publisherscope | International | |
dc.description.sponsoredbyTubitakEu | EU - TÜBİTAK | |
dc.description.sponsorship | Scientific and Technological Research Council of Turkey (TÜBİTAK) | |
dc.description.sponsorship | Turkish Academy of Sciences (TÜBA)-GEBIP of Turkish Academy of Sciences | |
dc.description.sponsorship | European Research Council (ERC) | |
dc.description.sponsorship | European Union (EU) | |
dc.description.sponsorship | Horizon 2020 | |
dc.description.sponsorship | Research and Innovation Programme | |
dc.description.sponsorship | SKYNOLIMIT | |
dc.description.version | Publisher version | |
dc.description.volume | 4 | |
dc.identifier.doi | 10.1103/PhysRevResearch.4.023221 | |
dc.identifier.eissn | 2643-1564 | |
dc.identifier.embargo | NO | |
dc.identifier.filenameinventoryno | IR03803 | |
dc.identifier.quartile | N/A | |
dc.identifier.scopus | 2-s2.0-85134374915 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14288/1286 | |
dc.identifier.wos | 817681300005 | |
dc.keywords | Color centers | |
dc.keywords | Nitrogen | |
dc.keywords | Nanodiamonds | |
dc.language.iso | eng | |
dc.publisher | American Physical Society (APS) | |
dc.relation.grantno | 120F230 | |
dc.relation.grantno | 117F416 | |
dc.relation.grantno | 948063 | |
dc.relation.ispartof | Physical Review Research | |
dc.relation.uri | http://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/10649 | |
dc.subject | Physics | |
dc.title | Steady state entanglement of distant nitrogen-vacancy centers in a coherent thermal magnon bath | |
dc.type | Journal Article | |
dspace.entity.type | Publication | |
local.contributor.kuauthor | Onbaşlı, Mehmet Cengiz | |
local.contributor.kuauthor | Müstecaplıoğlu, Özgür Esat | |
local.contributor.kuauthor | Ullah, Kamran | |
local.contributor.kuauthor | Yağan, Rawana | |
local.publication.orgunit1 | College of Sciences | |
local.publication.orgunit1 | College of Engineering | |
local.publication.orgunit1 | GRADUATE SCHOOL OF SCIENCES AND ENGINEERING | |
local.publication.orgunit1 | Research Center | |
local.publication.orgunit2 | KUYTAM (Koç University Surface Science and Technology Center) | |
local.publication.orgunit2 | Department of Physics | |
local.publication.orgunit2 | Department of Electrical and Electronics Engineering | |
local.publication.orgunit2 | Graduate School of Sciences and Engineering | |
relation.isOrgUnitOfPublication | 21598063-a7c5-420d-91ba-0cc9b2db0ea0 | |
relation.isOrgUnitOfPublication | c43d21f0-ae67-4f18-a338-bcaedd4b72a4 | |
relation.isOrgUnitOfPublication | 3fc31c89-e803-4eb1-af6b-6258bc42c3d8 | |
relation.isOrgUnitOfPublication | d41f66ba-d7a4-4790-9f8f-a456c391209b | |
relation.isOrgUnitOfPublication.latestForDiscovery | 21598063-a7c5-420d-91ba-0cc9b2db0ea0 | |
relation.isParentOrgUnitOfPublication | 8e756b23-2d4a-4ce8-b1b3-62c794a8c164 | |
relation.isParentOrgUnitOfPublication | af0395b0-7219-4165-a909-7016fa30932d | |
relation.isParentOrgUnitOfPublication | 434c9663-2b11-4e66-9399-c863e2ebae43 | |
relation.isParentOrgUnitOfPublication | d437580f-9309-4ecb-864a-4af58309d287 | |
relation.isParentOrgUnitOfPublication.latestForDiscovery | 8e756b23-2d4a-4ce8-b1b3-62c794a8c164 |
Files
Original bundle
1 - 1 of 1