Publication:
Flexible-rate learned hierarchical bi-directional video compression with motion refinement and frame-level bit allocation

dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorÇetin, Eren
dc.contributor.kuauthorYılmaz, Mustafa Akın
dc.contributor.kuauthorTekalp, Ahmet Murat
dc.contributor.otherDepartment of Electrical and Electronics Engineering
dc.contributor.researchcenterKoç Üniversitesi İş Bankası Yapay Zeka Uygulama ve Araştırma Merkezi (KUIS AI)/ Koç University İş Bank Artificial Intelligence Center (KUIS AI)
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.date.accessioned2024-12-29T09:36:00Z
dc.date.issued2022
dc.description.abstractThis paper presents improvements and novel additions to our recent work on end-to-end optimized hierarchical bidirectional video compression [1] to further advance the state-of-the-art in learned video compression. As an improvement, we combine motion estimation and prediction modules and compress refined residual motion vectors for improved rate-distortion performance. As novel addition, we adapted the gain unit proposed for image compression to flexible-rate video compression in two ways: first, the gain unit enables a single encoder model to operate at multiple rate-distortion operating points; second, we exploit the gain unit to control bit allocation among intra-coded vs. bi-directionally coded frames by fine tuning corresponding models for truly flexible-rate learned video coding. Experimental results demonstrate that we obtain state-of-the-art rate-distortion performance exceeding those of all prior art in learned video coding.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessGreen Submitted
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorsThis work was supported in part by TUBITAK 2247-A Award No. 120C156 and KUIS AI Center funded by Turkish Is Bank. A. M. Tekalp also acknowledges support from Turkish Academy of Sciences (TUBA).
dc.identifier.doi10.1109/ICIP46576.2022.9897455
dc.identifier.isbn978-1-6654-9620-9
dc.identifier.issn1522-4880
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85146730278
dc.identifier.urihttps://doi.org/10.1109/ICIP46576.2022.9897455
dc.identifier.urihttps://hdl.handle.net/20.500.14288/21889
dc.identifier.wos1058109501061
dc.keywordsEnd-to-end bi-directional video compression
dc.keywordsHierarchical B pictures
dc.keywordsRate-distortion optimization
dc.keywordsMotion refinement
dc.keywordsGain unit
dc.keywordsFlexible-rate coding
dc.languageen
dc.publisherIEEE
dc.relation.grantnoTUBITAK 2247-A [120C156]
dc.relation.grantnoKUIS AI Center - Turkish Is Bank
dc.relation.grantnoTurkish Academy of Sciences (TUBA)
dc.source2022 IEEE International Conference on Image Processing, ICIP
dc.subjectComputer science
dc.subjectEngineering
dc.subjectElectrical and electronic
dc.titleFlexible-rate learned hierarchical bi-directional video compression with motion refinement and frame-level bit allocation
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.kuauthorÇetin, Eren
local.contributor.kuauthorYılmaz, Mustafa Akın
local.contributor.kuauthorTekalp, Ahmet Murat
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0

Files