Publication:
Optimal population screening policies for Alzheimer’s disease*

dc.contributor.coauthorGürvit, İbrahim Hakan
dc.contributor.departmentDepartment of Business Administration
dc.contributor.departmentN/A
dc.contributor.kuauthorSayın, Serpil
dc.contributor.kuauthorÖnen, Zehra
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofilePhD Student
dc.contributor.otherDepartment of Business Administration
dc.contributor.schoolcollegeinstituteCollege of Administrative Sciences and Economics
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.yokid6755
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T23:53:29Z
dc.date.issued2019
dc.description.abstractAlzheimer’s disease (AD) constitutes a serious societal healthcare issue as the proportion of the aging population increases. There are ongoing discussions about the necessity of screening the population for AD. We investigate optimal population screening policies for AD using Markov Decision Processes (MDPs). The objective function combines quality-adjusted life years and costs. The disease states are identified according to Clinical Dementia Rating (CDR) scores. The screening test in the model is the Mini Mental State Examination (MMSE), a cognitive test that is widely used in clinical practice. A numerical implementation of the MDP model is presented based on data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and existing literature. In the baseline case, the optimal outcome is not to employ a population-wide screening program. We conduct extensive sensitivity analyses on several model parameters. Our study reveals that the optimal policy may be sensitive to changes in transition probability estimates. When we focus on transitions that are related to treatment effectiveness, we find that implementing a population screening policy becomes socially optimal when plans that lead to cognitive ability stabilization or improvement become available.
dc.description.indexedbyScopus
dc.description.issue1
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.volume9
dc.identifier.doi10.1080/24725579.2018.1543738
dc.identifier.issn2472-5579
dc.identifier.linkhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85062361637&doi=10.1080%2f24725579.2018.1543738&partnerID=40&md5=7f36c888f90ddab8effc742728958ef6
dc.identifier.scopus2-s2.0-85062361637
dc.identifier.urihttps://dx.doi.org/10.1080/24725579.2018.1543738
dc.identifier.urihttps://hdl.handle.net/20.500.14288/15031
dc.keywordsAlzheimer’s disease
dc.keywordsMarkov decision process
dc.keywordsOptimal policy
dc.keywordsPopulation screening
dc.languageEnglish
dc.publisherTaylor and Francis Inc.
dc.sourceIISE Transactions on Healthcare Systems Engineering
dc.subjectMedicine
dc.titleOptimal population screening policies for Alzheimer’s disease*
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0002-3672-0769
local.contributor.authoridN/A
local.contributor.kuauthorSayın, Serpil
local.contributor.kuauthorÖnen, Zehra
relation.isOrgUnitOfPublicationca286af4-45fd-463c-a264-5b47d5caf520
relation.isOrgUnitOfPublication.latestForDiscoveryca286af4-45fd-463c-a264-5b47d5caf520

Files