Publication: Dual krull dimension and quotient finite dimensionality
dc.contributor.coauthor | Iosif, Mihai | |
dc.contributor.coauthor | Teply, Mark L. | |
dc.contributor.department | Department of Mathematics | |
dc.contributor.kuauthor | Albu, Toma | |
dc.contributor.kuprofile | Faculty Member | |
dc.contributor.other | Department of Mathematics | |
dc.contributor.schoolcollegeinstitute | College of Sciences | |
dc.contributor.yokid | N/A | |
dc.date.accessioned | 2024-11-09T23:50:32Z | |
dc.date.issued | 2005 | |
dc.description.abstract | A modular lattice L with 0 and 1 is called quotient finite dimensional (QFD) if [x, 1] has no infinite independent set for any x epsilon L. We characterize upper continuous modular lattices L that have dual Krull dimension k(0) (L) less than or equal to alpha, by relating that with the property of L being QFD and with other conditions involving subdirectly irreducible lattices and/or meet irreducible elements. In particular, we answer in the positive, in the more general latticial setting, some open questions on QFD modules raised by Albu and Rizvi [Comm. Algebra 29 (2001) 1909-1928]. Applications of these results are given to Grothendieck categories and module categories equipped with a torsion theory. (C) 2004 Elsevier Inc. All rights reserved. | |
dc.description.indexedby | WoS | |
dc.description.indexedby | Scopus | |
dc.description.issue | 1 | |
dc.description.openaccess | YES | |
dc.description.publisherscope | International | |
dc.description.sponsoredbyTubitakEu | N/A | |
dc.description.volume | 284 | |
dc.identifier.doi | 10.1016/j.jalgebra.2004.09.024 | |
dc.identifier.issn | 0021-8693 | |
dc.identifier.quartile | Q2 | |
dc.identifier.scopus | 2-s2.0-12144255120 | |
dc.identifier.uri | http://dx.doi.org/10.1016/j.jalgebra.2004.09.024 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14288/14560 | |
dc.identifier.wos | 226588200004 | |
dc.keywords | Upper continuous lattice | |
dc.keywords | Krull dimension | |
dc.keywords | Dual krull dimension | |
dc.keywords | Subdirectly | |
dc.keywords | Irreducible | |
dc.keywords | Meet irreducible | |
dc.keywords | Goldie dimension | |
dc.keywords | Qfd lattice | |
dc.keywords | Grothendieck category | |
dc.keywords | Torsion theory hopkıns-levitzki theorem | |
dc.keywords | Modular lattices | |
dc.keywords | Deviation | |
dc.keywords | Localization | |
dc.keywords | Sets | |
dc.language | English | |
dc.publisher | Elsevier | |
dc.source | Journal of Algebra | |
dc.subject | Mathematics | |
dc.title | Dual krull dimension and quotient finite dimensionality | |
dc.type | Journal Article | |
dspace.entity.type | Publication | |
local.contributor.authorid | 0000-0001-8121-9220 | |
local.contributor.kuauthor | Albu, Toma | |
relation.isOrgUnitOfPublication | 2159b841-6c2d-4f54-b1d4-b6ba86edfdbe | |
relation.isOrgUnitOfPublication.latestForDiscovery | 2159b841-6c2d-4f54-b1d4-b6ba86edfdbe |