Publication: 3D printed personalized magnetic micromachines from patient blood-derived biomaterials
dc.contributor.coauthor | Ceylan, Hakan | |
dc.contributor.coauthor | Doğan, Nihal Olcay | |
dc.contributor.coauthor | Yaşa, İmmihan Ceren | |
dc.contributor.department | Department of Mechanical Engineering | |
dc.contributor.department | School of Medicine | |
dc.contributor.kuauthor | Sitti, Metin | |
dc.contributor.kuauthor | Musaoğlu, Miraç Nur | |
dc.contributor.kuauthor | Kulalı, Zeynep Umut | |
dc.contributor.kuprofile | Faculty Member | |
dc.contributor.schoolcollegeinstitute | College of Engineering | |
dc.contributor.schoolcollegeinstitute | SCHOOL OF MEDICINE | |
dc.contributor.yokid | 297104 | |
dc.contributor.yokid | N/A | |
dc.contributor.yokid | N/A | |
dc.date.accessioned | 2024-11-09T13:56:09Z | |
dc.date.issued | 2021 | |
dc.description.abstract | While recent wireless micromachines have shown increasing potential for medical use, their potential safety risks concerning biocompatibility need to be mitigated. They are typically constructed from materials that are not intrinsically compatible with physiological environments. Here, we propose a personalized approach by using patient blood-derivable biomaterials as the main construction fabric of wireless medical micromachines to alleviate safety risks from biocompatibility. We demonstrate 3D printed multiresponsive microswimmers and microrollers made from magnetic nanocomposites of blood plasma, serum albumin protein, and platelet lysate. These micro-machines respond to time-variant magnetic fields for torque-driven steerable motion and exhibit multiple cycles of pH-responsive two-way shape memory behavior for controlled cargo delivery and release applications. Their proteinaceous fabrics enable enzymatic degradability with proteinases, thereby lowering risks of long-term toxicity. The personalized micromachine fabrication strategy we conceptualize here can affect various future medical robots and devices made of autologous biomaterials to improve biocompatibility and smart functionality. | |
dc.description.fulltext | YES | |
dc.description.indexedby | WoS | |
dc.description.indexedby | Scopus | |
dc.description.indexedby | PubMed | |
dc.description.issue | 36 | |
dc.description.openaccess | YES | |
dc.description.publisherscope | International | |
dc.description.sponsoredbyTubitakEu | EU | |
dc.description.sponsorship | European Union (EU) | |
dc.description.sponsorship | Horizon 2020 | |
dc.description.sponsorship | European Research Council (ERC) Advanced Grant | |
dc.description.sponsorship | SoMMoR Project | |
dc.description.sponsorship | Max Planck Society | |
dc.description.version | Publisher version | |
dc.description.volume | 7 | |
dc.format | ||
dc.identifier.doi | 10.1126/sciadv.abh0273 | |
dc.identifier.embargo | NO | |
dc.identifier.filenameinventoryno | IR03178 | |
dc.identifier.issn | 2375-2548 | |
dc.identifier.link | https://doi.org/10.1126/sciadv.abh0273 | |
dc.identifier.quartile | N/A | |
dc.identifier.scopus | 2-s2.0-85114298617 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14288/4030 | |
dc.identifier.wos | 695711400032 | |
dc.keywords | Biocompatibility | |
dc.keywords | Blood | |
dc.keywords | Magnetism | |
dc.keywords | Magnetoplasma | |
dc.keywords | Medical robotics | |
dc.language | English | |
dc.publisher | American Association for the Advancement of Science (AAAS) | |
dc.relation.grantno | 834531 | |
dc.relation.uri | http://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/9941 | |
dc.source | Science Advances | |
dc.subject | Science and technology | |
dc.title | 3D printed personalized magnetic micromachines from patient blood-derived biomaterials | |
dc.type | Journal Article | |
dspace.entity.type | Publication | |
local.contributor.authorid | 0000-0001-8249-3854 | |
local.contributor.authorid | N/A | |
local.contributor.authorid | N/A | |
local.contributor.kuauthor | Sitti, Metin | |
local.contributor.kuauthor | Musaoğlu, Miraç Nur | |
local.contributor.kuauthor | Kulalı, Zeynep Umut | |
local.publication.orgunit1 | College of Engineering | |
local.publication.orgunit1 | SCHOOL OF MEDICINE | |
local.publication.orgunit2 | Department of Mechanical Engineering | |
local.publication.orgunit2 | School of Medicine | |
relation.isOrgUnitOfPublication | ba2836f3-206d-4724-918c-f598f0086a36 | |
relation.isOrgUnitOfPublication | d02929e1-2a70-44f0-ae17-7819f587bedd | |
relation.isOrgUnitOfPublication.latestForDiscovery | ba2836f3-206d-4724-918c-f598f0086a36 | |
relation.isParentOrgUnitOfPublication | 8e756b23-2d4a-4ce8-b1b3-62c794a8c164 | |
relation.isParentOrgUnitOfPublication | 17f2dc8e-6e54-4fa8-b5e0-d6415123a93e | |
relation.isParentOrgUnitOfPublication.latestForDiscovery | 8e756b23-2d4a-4ce8-b1b3-62c794a8c164 |
Files
Original bundle
1 - 1 of 1