Publication: Pseudo-Hermitian description of PT-symmetric systems defined on a complex contour
dc.contributor.coauthor | N/A | |
dc.contributor.department | Department of Mathematics | |
dc.contributor.kuauthor | Mostafazadeh, Ali | |
dc.contributor.schoolcollegeinstitute | College of Sciences | |
dc.date.accessioned | 2024-11-09T23:23:34Z | |
dc.date.issued | 2005 | |
dc.description.abstract | We describe a method that allows for a practical application of the theory of pseudo-Hermitian operators to PT-symmetric systems defined on a complex contour. We apply this method to study the Hamiltonians H = p(2) + x(2) (ix)(v) with v epsilon (-2, infinity) that are defined along the corresponding anti-Stokes lines. In particular, we reveal the intrinsic non-Hermiticity of H for the cases that v is an even integer, so that H = p(2) +/- x(2+v) and give a proof of the discreteness of the spectrum of H for all v epsilon (-2, infinity). Furthermore, we study the consequences of defining a square-well Hamiltonian on a wedge-shaped complex contour. This yields a PT-symmetric system with a finite number of real eigenvalues. We present a comprehensive analysis of this system within the framework of pseudo-Hermitian quantum mechanics. We also outline a direct pseudo-Hermitian treatment of PT-symmetric systems defined on a complex contour which clarifies the underlying mathematical structure of the formulation of PT-symmetric quantum mechanics based on the charge-conjugation operator. Our results provide conclusive evidence that pseudo-Hermitian quantum mechanics provides a complete description of general PT-symmetric systems regardless of whether they are defined along the real line or a complex contour. | |
dc.description.indexedby | WOS | |
dc.description.indexedby | Scopus | |
dc.description.issue | 14 | |
dc.description.openaccess | YES | |
dc.description.sponsoredbyTubitakEu | N/A | |
dc.description.volume | 38 | |
dc.identifier.doi | 10.1088/0305-4470/38/14/011 | |
dc.identifier.issn | 0305-4470 | |
dc.identifier.scopus | 2-s2.0-17044399715 | |
dc.identifier.uri | https://doi.org/10.1088/0305-4470/38/14/011 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14288/11266 | |
dc.identifier.wos | 228743800016 | |
dc.keywords | Quantum-mechanics | |
dc.keywords | Square-well | |
dc.keywords | Cpt-invariance | |
dc.keywords | Hamiltonians | |
dc.keywords | Reality | |
dc.keywords | Spectrum | |
dc.language.iso | eng | |
dc.publisher | Iop Publishing Ltd | |
dc.relation.ispartof | Journal of Physics A: Mathematical and General | |
dc.subject | Physics | |
dc.subject | Mathematical physics | |
dc.title | Pseudo-Hermitian description of PT-symmetric systems defined on a complex contour | |
dc.type | Journal Article | |
dspace.entity.type | Publication | |
local.contributor.kuauthor | Mostafazadeh, Ali | |
local.publication.orgunit1 | College of Sciences | |
local.publication.orgunit2 | Department of Mathematics | |
relation.isOrgUnitOfPublication | 2159b841-6c2d-4f54-b1d4-b6ba86edfdbe | |
relation.isOrgUnitOfPublication.latestForDiscovery | 2159b841-6c2d-4f54-b1d4-b6ba86edfdbe | |
relation.isParentOrgUnitOfPublication | af0395b0-7219-4165-a909-7016fa30932d | |
relation.isParentOrgUnitOfPublication.latestForDiscovery | af0395b0-7219-4165-a909-7016fa30932d |