Publication:
Machining swarf formation-inspired fabrication of ferrofluidic helical miniature robots with multimodal locomotion capability

dc.contributor.coauthorFan, Xinjian
dc.contributor.coauthorChen, Qinkai
dc.contributor.coauthorLi, Mingtong
dc.contributor.coauthorWu, Zhengnan
dc.contributor.coauthorTong, Dingwen
dc.contributor.coauthorXie, Hui
dc.contributor.coauthorYang, Zhan
dc.contributor.coauthorSun, Lining
dc.contributor.coauthorSitti, Metin
dc.contributor.departmentSchool of Medicine
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.kuauthorFaculty Member, Sitti, Metin
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteSCHOOL OF MEDICINE
dc.date.accessioned2025-09-10T04:58:03Z
dc.date.available2025-09-09
dc.date.issued2025
dc.description.abstractMagnetic helical robots (MHRs) have shown notable potential for targeted therapy. However, traditional fabrication methods are usually complex and expensive, and the prepared MHR's locomotion is monotonous with limited capacity. Here, we present a cost-effective, customizable, and scalable fabrication craft of MHR, via using bent needle tips to engrave helical structures onto polymethyl methacrylate substrates and incorporating nanoparticle alignment strategies to create ferrofluidic helical miniature robots (FHMRs) with cross-scale size scopes. We then propose strategic magnetic driving methods that enable FHMRs with five powerful motion modes for negotiating various application scenarios. Experimental results show that FHMRs can move flexibly and effectively simulate thrombus removal within a vascular model by integrating multiple motion modes. Furthermore, modified FHMRs can swiftly deliver drugs to targeted areas, with the capability for phased release on surfaces of wrinkled physiological tissues. These advancements highlight the considerable potential of FHMRs for future applications in the biomedical field.
dc.description.fulltextYes
dc.description.harvestedfromManual
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.openaccessGold OA
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuEU
dc.description.sponsorshipNational Key R&d Program of china [2023YFB4705600]; National natural Science Foundation of china [62422313, 92248302, 61925304]; Max Planck Society; European Research council (eRc) Advanced Grant [834531]
dc.description.versionPublished Version
dc.description.volume11
dc.identifier.doi10.1126/sciadv.ads4411
dc.identifier.eissn2375-2548
dc.identifier.embargoNo
dc.identifier.filenameinventorynoIR06478
dc.identifier.issue27
dc.identifier.quartileN/A
dc.identifier.urihttps://doi.org/10.1126/sciadv.ads4411
dc.identifier.urihttps://hdl.handle.net/20.500.14288/30307
dc.identifier.wos001522918900015
dc.language.isoeng
dc.publisherAmer Assoc Advancement Science
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofScience advances
dc.relation.openaccessYes
dc.rightsCC BY-NC (Attribution-NonCommercial)
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/
dc.subjectMultidisciplinary Sciences
dc.titleMachining swarf formation-inspired fabrication of ferrofluidic helical miniature robots with multimodal locomotion capability
dc.typeJournal Article
dspace.entity.typePublication
relation.isOrgUnitOfPublicationd02929e1-2a70-44f0-ae17-7819f587bedd
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublication.latestForDiscoveryd02929e1-2a70-44f0-ae17-7819f587bedd
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication17f2dc8e-6e54-4fa8-b5e0-d6415123a93e
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
IR06478.pdf
Size:
5.99 MB
Format:
Adobe Portable Document Format