Publication: Nonlinear turbo equalization using context trees
dc.contributor.coauthor | Kim, Kyeongyeon | |
dc.contributor.coauthor | Singer, Andrew C. | |
dc.contributor.department | Department of Electrical and Electronics Engineering | |
dc.contributor.department | N/A | |
dc.contributor.kuauthor | Kozat, Süleyman Serdar | |
dc.contributor.kuauthor | Kalantarova, Nargiz | |
dc.contributor.kuprofile | Faculty Member | |
dc.contributor.kuprofile | PhD Student | |
dc.contributor.other | Department of Electrical and Electronics Engineering | |
dc.contributor.schoolcollegeinstitute | College of Engineering | |
dc.contributor.schoolcollegeinstitute | Graduate School of Sciences and Engineering | |
dc.contributor.yokid | 177972 | |
dc.contributor.yokid | N/A | |
dc.date.accessioned | 2024-11-09T22:52:57Z | |
dc.date.issued | 2011 | |
dc.description.abstract | In this paper, we study adaptive nonlinear turbo equalization to model the nonlinear dependency of a linear minimum mean square error (MMSE) equalizer on soft information from the decoder. To accomplish this, we introduce piecewise linear models based on context trees that can adaptively choose both the partition regions as well as the equalizer coefficients in each region independently, with the computational complexity of a single adaptive linear equalizer. This approach is guaranteed to asymptotically achieve the performance of the best piecewise linear equalizer that can choose both its regions as well as its filter parameters based on observing the whole data sequence in advance. | |
dc.description.indexedby | Scopus | |
dc.description.openaccess | YES | |
dc.description.publisherscope | International | |
dc.identifier.doi | 10.1109/ITA.2011.5743608 | |
dc.identifier.isbn | 9781-4577-0361-4 | |
dc.identifier.link | https://www.scopus.com/inward/record.uri?eid=2-s2.0-79955781810anddoi=10.1109%2fITA.2011.5743608andpartnerID=40andmd5=4eed77d6e7265646d7376ff4452a9756 | |
dc.identifier.quartile | N/A | |
dc.identifier.scopus | 2-s2.0-79955781810 | |
dc.identifier.uri | http://dx.doi.org/10.1109/ITA.2011.5743608 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14288/7112 | |
dc.keywords | Turbo equalization | |
dc.keywords | Context trees | |
dc.keywords | Data sequences | |
dc.keywords | Decision feedback | |
dc.keywords | Equalizer coefficients | |
dc.keywords | Filter parameter | |
dc.keywords | Linear equalizer | |
dc.keywords | Linear minimum mean square errors | |
dc.keywords | Nonlinear dependencies | |
dc.keywords | Nonlinear equalization | |
dc.keywords | Piecewise linear | |
dc.keywords | Piecewise linear models | |
dc.keywords | Soft information | |
dc.keywords | Turbo equalizations | |
dc.keywords | Computational complexity | |
dc.keywords | Information theory | |
dc.keywords | Piecewise linear techniques | |
dc.keywords | Plant extracts | |
dc.keywords | Signal receivers | |
dc.keywords | Decision feedback equalizers | |
dc.language | English | |
dc.publisher | IEEE | |
dc.source | 2011 Information Theory and Applications Workshop, ITA 2011 - Conference Proceedings | |
dc.subject | Engineering | |
dc.subject | Electrical and electronics engineering | |
dc.title | Nonlinear turbo equalization using context trees | |
dc.type | Conference proceeding | |
dspace.entity.type | Publication | |
local.contributor.authorid | 0000-0002-6488-3848 | |
local.contributor.authorid | N/A | |
local.contributor.kuauthor | Kozat, Süleyman Serdar | |
local.contributor.kuauthor | Kalantarova, Nargiz | |
relation.isOrgUnitOfPublication | 21598063-a7c5-420d-91ba-0cc9b2db0ea0 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 21598063-a7c5-420d-91ba-0cc9b2db0ea0 |