Publication:
Large-scale computation of L-infinity-norms by a greedy subspace method

dc.contributor.coauthorBenner, Peter
dc.contributor.coauthorSchwerdtner, Paul
dc.contributor.departmentDepartment of Mathematics
dc.contributor.departmentGraduate School of Sciences and Engineering
dc.contributor.kuauthorAliyev, Nicat
dc.contributor.kuauthorMengi, Emre
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.schoolcollegeinstituteGRADUATE SCHOOL OF SCIENCES AND ENGINEERING
dc.date.accessioned2024-11-09T12:11:12Z
dc.date.issued2017
dc.description.abstractWe are concerned with the computation of the L-infinity-norm for an L-infinity-function of the form H(s) = C(s) D(s) B-1(s), where the middle factor is the inverse of a meromorphic matrix-valued function, and C(s), B(s) are meromorphic functions mapping to short-and-fat and tall-and-skinny matrices, respectively. For instance, transfer functions of descriptor systems and delay systems fall into this family. We focus on the case where the middle factor is large scale. We propose a subspace projection method to obtain approximations of the function H where the middle factor is of much smaller dimension. The L-infinity-norms are computed for the resulting reduced functions, then the subspaces are refined by means of the optimal points on the imaginary axis where the L-infinity-norm of the reduced function is attained. The subspace method is designed so that certain Hermite interpolation properties hold between the largest singular values of the original and reduced functions. This leads to a locally superlinearly convergent algorithm with respect to the subspace dimension, which we prove and illustrate on various numerical examples.
dc.description.fulltextYES
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.issue4
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipBAGEP program of The Science Academy of Turkey
dc.description.sponsorshipDFG
dc.description.sponsorshipEinstein Foundation Berlin
dc.description.versionPublisher version
dc.description.volume38
dc.identifier.doi10.1137/16M1086200
dc.identifier.eissn1095-7162
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR01493
dc.identifier.issn0895-4798
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-85032685508
dc.identifier.urihttps://doi.org/10.1137/16M1086200
dc.identifier.wos418665600019
dc.keywordsL-infinity-norm
dc.keywordsLarge scale
dc.keywordsProjection
dc.keywordsSingular values
dc.keywordsHermite interpolation
dc.keywordsDescriptor systems
dc.keywordsDelay systems
dc.keywordsModel order reduction
dc.keywordsGreedy search
dc.keywordsReduced basis
dc.language.isoeng
dc.publisherSociety for Industrial and Applied Mathematics (SIAM)
dc.relation.grantno1897
dc.relation.ispartofSIAM Journal on Matrix Analysis and Applications
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/8061
dc.subjectMathematics, applied
dc.titleLarge-scale computation of L-infinity-norms by a greedy subspace method
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorAliyev, Nicat
local.contributor.kuauthorMengi, Emre
local.contributor.kuauthorVoigt, Matthias
local.publication.orgunit1College of Sciences
local.publication.orgunit1GRADUATE SCHOOL OF SCIENCES AND ENGINEERING
local.publication.orgunit2Department of Mathematics
local.publication.orgunit2Graduate School of Sciences and Engineering
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isParentOrgUnitOfPublicationaf0395b0-7219-4165-a909-7016fa30932d
relation.isParentOrgUnitOfPublication434c9663-2b11-4e66-9399-c863e2ebae43
relation.isParentOrgUnitOfPublication.latestForDiscoveryaf0395b0-7219-4165-a909-7016fa30932d

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
8061.pdf
Size:
389.59 KB
Format:
Adobe Portable Document Format