Publication: An uncountable ergodic Roth theorem and applications
dc.contributor.coauthor | Schmid, Polona durcik | |
dc.contributor.coauthor | Greenfeld, Rachel | |
dc.contributor.coauthor | Iseli, Annina | |
dc.contributor.coauthor | Jamneshan | |
dc.contributor.coauthor | Madrid, Jose | |
dc.contributor.department | Department of Mathematics | |
dc.contributor.department | Department of Mathematics | |
dc.contributor.kuauthor | Jamneshan, Asgar | |
dc.contributor.kuprofile | Faculty Member | |
dc.contributor.schoolcollegeinstitute | College of Sciences | |
dc.contributor.yokid | 332404 | |
dc.date.accessioned | 2024-11-09T13:08:27Z | |
dc.date.issued | 2022 | |
dc.description.abstract | We establish an uncountable amenable ergodic Roth theorem, in which the acting group is not assumed to be countable and the space need not be separable. This generalizes a previous result of Bergelson, McCutcheon and Zhang, and complements a result of Zorin-Kranich. We establish the following two additional results: First, a combinatorial application about triangular patterns in certain subsets of the Cartesian square of arbitrary amenable groups, extending a result of Bergelson, McCutcheon and Zhang for countable amenable groups. Second, a new uniformity aspect in the double recurrence theorem for Gamma-systems for uniformly amenable groups Gamma. As a special case, we obtain this uniformity over all Z-systems, and our result seems to be novel already in this case. Our uncountable Roth theorem is crucial in the proof of both of these results. | |
dc.description.fulltext | YES | |
dc.description.indexedby | WoS | |
dc.description.indexedby | Scopus | |
dc.description.issue | 11 | |
dc.description.openaccess | YES | |
dc.description.publisherscope | International | |
dc.description.sponsoredbyTubitakEu | N/A | |
dc.description.sponsorship | N/A | |
dc.description.version | Author's final manuscript | |
dc.description.volume | 42 | |
dc.format | ||
dc.identifier.doi | 10.3934/dcds.2022111 | |
dc.identifier.eissn | 1553-5231 | |
dc.identifier.embargo | NO | |
dc.identifier.filenameinventoryno | IR03822 | |
dc.identifier.issn | 1078-0947 | |
dc.identifier.link | https://doi.org/10.3934/dcds.2022111 | |
dc.identifier.quartile | Q2 | |
dc.identifier.scopus | 2-s2.0-85136134185 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14288/2689 | |
dc.identifier.wos | 835551000001 | |
dc.keywords | Uncountable ergodic theory | |
dc.keywords | Ergodic ramsey theory | |
dc.keywords | Ergodic roth theorem | |
dc.keywords | Amenable groups | |
dc.keywords | Syndetic sets | |
dc.keywords | Uniformity in recurrence | |
dc.keywords | Furstenberg correspondence principle | |
dc.language | English | |
dc.publisher | American Institute of Mathematical Sciences | |
dc.relation.grantno | NA | |
dc.relation.uri | http://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/10682 | |
dc.source | Discrete and Continuous Dynamical Systems | |
dc.subject | Mathematics, applied | |
dc.subject | Mathematics | |
dc.title | An uncountable ergodic Roth theorem and applications | |
dc.type | Journal Article | |
dspace.entity.type | Publication | |
local.contributor.authorid | 0000-0002-1450-6569 | |
local.contributor.kuauthor | Jamneshan, Asgar | |
relation.isOrgUnitOfPublication | 2159b841-6c2d-4f54-b1d4-b6ba86edfdbe | |
relation.isOrgUnitOfPublication.latestForDiscovery | 2159b841-6c2d-4f54-b1d4-b6ba86edfdbe |
Files
Original bundle
1 - 1 of 1