Publication:
An uncountable ergodic Roth theorem and applications

dc.contributor.coauthorSchmid, Polona durcik
dc.contributor.coauthorGreenfeld, Rachel
dc.contributor.coauthorIseli, Annina
dc.contributor.coauthorJamneshan
dc.contributor.coauthorMadrid, Jose
dc.contributor.departmentDepartment of Mathematics
dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorJamneshan, Asgar
dc.contributor.kuprofileFaculty Member
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.yokid332404
dc.date.accessioned2024-11-09T13:08:27Z
dc.date.issued2022
dc.description.abstractWe establish an uncountable amenable ergodic Roth theorem, in which the acting group is not assumed to be countable and the space need not be separable. This generalizes a previous result of Bergelson, McCutcheon and Zhang, and complements a result of Zorin-Kranich. We establish the following two additional results: First, a combinatorial application about triangular patterns in certain subsets of the Cartesian square of arbitrary amenable groups, extending a result of Bergelson, McCutcheon and Zhang for countable amenable groups. Second, a new uniformity aspect in the double recurrence theorem for Gamma-systems for uniformly amenable groups Gamma. As a special case, we obtain this uniformity over all Z-systems, and our result seems to be novel already in this case. Our uncountable Roth theorem is crucial in the proof of both of these results.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue11
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipN/A
dc.description.versionAuthor's final manuscript
dc.description.volume42
dc.formatpdf
dc.identifier.doi10.3934/dcds.2022111
dc.identifier.eissn1553-5231
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR03822
dc.identifier.issn1078-0947
dc.identifier.linkhttps://doi.org/10.3934/dcds.2022111
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-85136134185
dc.identifier.urihttps://hdl.handle.net/20.500.14288/2689
dc.identifier.wos835551000001
dc.keywordsUncountable ergodic theory
dc.keywordsErgodic ramsey theory
dc.keywordsErgodic roth theorem
dc.keywordsAmenable groups
dc.keywordsSyndetic sets
dc.keywordsUniformity in recurrence
dc.keywordsFurstenberg correspondence principle
dc.languageEnglish
dc.publisherAmerican Institute of Mathematical Sciences
dc.relation.grantnoNA
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/10682
dc.sourceDiscrete and Continuous Dynamical Systems
dc.subjectMathematics, applied
dc.subjectMathematics
dc.titleAn uncountable ergodic Roth theorem and applications
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0002-1450-6569
local.contributor.kuauthorJamneshan, Asgar
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
10682.pdf
Size:
302.36 KB
Format:
Adobe Portable Document Format