Publication:
Seamless edge-server collaboration for real-time digital twin in machining process

dc.conference.date22 May 2025 through 23 May 2025
dc.conference.locationMons
dc.contributor.coauthorYucesan, Yigit Anil
dc.contributor.coauthorSahin, Mehmet Alper
dc.contributor.coauthorUresin, Ugur
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.departmentGraduate School of Sciences and Engineering
dc.contributor.departmentMARC (Manufacturing and Automation Research Center)
dc.contributor.kuauthorBeşirova, Cemile
dc.contributor.kuauthorLazoğlu, İsmail
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGRADUATE SCHOOL OF SCIENCES AND ENGINEERING
dc.contributor.schoolcollegeinstituteResearch Center
dc.date.accessioned2025-05-22T10:34:18Z
dc.date.available2025-05-22
dc.date.issued2025
dc.description.abstractWith the rise of smart manufacturing systems aimed at creating efficient and cost-effective environments for mass production, various process data acquisition techniques and data models have been developed for CNC manufacturing to enable the creation of Digital Twin (DT) models. This article proposes an edge-server collaborative data architecture collecting crucial CNC machine data, including servo motor parameters, cutting tool information, and sensor data such as vibration, pressure, and temperature. The architecture is designed to process real-Time data during mass production with minimal latency, considering the high-speed nature of machining processes, while also storing historical data in a Data Lake for the development of AI models. An infrastructure for Digital Twin of the brake disc machining process is created, a particularly challenging task due to the complex geometry of the disc and the unique material characteristics of cast iron. During machining, sudden tool failures or even brake disc breakages can occur due to the heterogeneous nature of cast iron. Given that brake discs are critical safety components in automobiles, monitoring process data linked to the cast iron and cutting tool supply chain during mass production is essential. Digital Shadow serves as a foundation for real-Time anomaly detection, predictive maintenance, and tool wear prediction models. This paper also proposes several deterministic modeling approaches for real-Time anomaly detection, predictive maintenance, and remaining useful life predictions for cutting tools. These models leverage machine data such as spindle and feed-drive motor currents, load, and positional errors during brake disc machining, in combination with sensor data, including temperature, pressure, electrical power, and vibration, to enhance the monitoring and optimization of the machining process.
dc.description.fulltextYes
dc.description.harvestedfromManual
dc.description.indexedbyScopus
dc.description.openaccessGold OA
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipFord Otomotiv Sanayi
dc.description.versionPublished Version
dc.identifier.doi10.1016/j.procir.2025.02.070
dc.identifier.embargoNo
dc.identifier.endpage411
dc.identifier.filenameinventorynoIR06237
dc.identifier.issn2212-8271
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-105003238610
dc.identifier.startpage406
dc.identifier.urihttps://doi.org/10.1016/j.procir.2025.02.070
dc.identifier.urihttps://hdl.handle.net/20.500.14288/29362
dc.identifier.volume133
dc.keywordsComputer aided manufacturing
dc.keywordsDisks (machine components)
dc.keywordsDisks (structural components)
dc.keywordsGrinding (machining)
dc.keywordsProcess control
dc.keywordsSmart manufacturing
dc.keywordsStress relief
dc.language.isoeng
dc.publisherElsevier
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofProcedia CIRP
dc.relation.ispartof20th CIRP Conference on Modeling of Machining Operations in Mons, CIRP CMMO 2025
dc.relation.openaccessYes
dc.rightsCC BY-NC-ND (Attribution-NonCommercial-NoDerivs)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectMechanical engineering
dc.subjectManufacturing and automation
dc.titleSeamless edge-server collaboration for real-time digital twin in machining process
dc.typeConference Proceeding
dspace.entity.typePublication
person.familyNameBeşirova
person.familyNameLazoğlu
person.givenNameCemile
person.givenNameİsmail
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublication3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isOrgUnitOfPublication52df3968-be7f-4c06-92e5-3b48e79ba93a
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication434c9663-2b11-4e66-9399-c863e2ebae43
relation.isParentOrgUnitOfPublicationd437580f-9309-4ecb-864a-4af58309d287
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files