Publication:
Towards single-cell LC-MS phosphoproteomics

Thumbnail Image

School / College / Institute

Program

KU Authors

Co-Authors

Publication Date

Language

Embargo Status

NO

Journal Title

Journal ISSN

Volume Title

Alternative Title

Abstract

Protein phosphorylation is a ubiquitous posttranslational modification, which is heavily involved in signal transduction. Misregulation of protein phosphorylation is often associated with a decrease in cell viability and complex diseases such as cancer. The dynamic and low abundant nature of phosphorylated proteins makes studying phosphoproteome a challenging task. In this review, we summarize state of the art proteomic techniques to study and quantify peptide phosphorylation in biological systems and discuss their limitations. Due to its short-lived nature, the phosphorylation event cannot be precisely traced in a heterogonous cell population, which highlights the importance of analyzing phosphorylation events at the single cell level. Mainly, we focus on the methodical and instrumental developments in proteomics and nanotechnology, which will help to build more accurate and robust systems for the feasibility of phosphorylation analysis at the single cell level. We propose that an automated and miniaturized construction of analytical systems holds the key to the future of phosphoproteomics; therefore, we highlight the benchmark studies in this direction. Having advanced and automated microfluidic chip LC systems will allow us to analyze single-cell phosphoproteomics and quantitatively compare it with others. The progress in the microfluidic chip LC systems and feasibility of the single-cell phosphoproteomics will be beneficial for early diagnosis and detection of the treatment response of many crucial diseases.

Source

Publisher

Royal Society of Chemistry (RSC)

Subject

Analytical chemistry

Citation

Has Part

Source

The Analyst

Book Series Title

Edition

DOI

10.1039/c4an00463a

item.page.datauri

Link

Rights

Copyrights Note

Endorsement

Review

Supplemented By

Referenced By

1

Views

3

Downloads

View PlumX Details