Publication:
On identifiable polytope characterization for polytopic matrix factorization

dc.contributor.departmentN/A
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorBozkurt, Barışcan
dc.contributor.kuauthorErdoğan, Alper Tunga
dc.contributor.kuprofileMaster Student
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Electrical and Electronics Engineering
dc.contributor.researchcenterKoç Üniversitesi İş Bankası Yapay Zeka Uygulama ve Araştırma Merkezi (KUIS AI)/ Koç University İş Bank Artificial Intelligence Center (KUIS AI)
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokidN/A
dc.contributor.yokid41624
dc.date.accessioned2024-11-09T22:57:10Z
dc.date.issued2022
dc.description.abstractPolytopic matrix factorization (PMF) is a recently introduced matrix decomposition method in which the data vectors are modeled as linear transformations of samples from a polytope. the successful recovery of the original factors in the generative PMF model is conditioned on the "identifiability" of the chosen polytope. in this article, we investigate the problem of determining the identifiability of a polytope. the identifiability condition requires the polytope to be permutationand/or-sign-only invariant. We show how this problem can be efficiently solved by using a graph automorphism algorithm. in particular, we show that checking only the generating set of the linear automorphism group of a polytope, which corresponds to the automorphism group of an edge-colored complete graph, is sufficient. This property prevents checking all the elements of the permutation group, which requires factorial algorithm complexity. We demonstrate the feasibility of the proposed approach through some numerical experiments.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsorshipaI Fellowship
dc.description.sponsorshipKUIS aI Lab This work is partially supported by an aI Fellowship provided by the KUIS aI Lab.
dc.identifier.doi10.1109/ICaSSP43922.2022.9746370
dc.identifier.isbn978-1-6654-0540-9
dc.identifier.issn1520-6149
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85131241576
dc.identifier.urihttp://dx.doi.org/10.1109/ICaSSP43922.2022.9746370
dc.identifier.urihttps://hdl.handle.net/20.500.14288/7506
dc.identifier.wos864187903126
dc.keywordsPolytopic matrix factorization
dc.keywordsPolytope symmetries
dc.keywordsGroup theory
dc.keywordsLinear automorphism group
dc.keywordsGraph automorphism
dc.languageEnglish
dc.publisherIEEE
dc.source2022 IEEE international Conference on acoustics, Speech and Signal Processing (Icassp)
dc.subjectAcoustics
dc.subjectComputer science
dc.subjectArtificial intelligence
dc.subjectEngineering
dc.subjectElectrical electronic engineerings engineering
dc.titleOn identifiable polytope characterization for polytopic matrix factorization
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authorid0000-0003-3958-2194
local.contributor.authorid0000-0003-0876-2897
local.contributor.kuauthorBozkurt, Barışcan
local.contributor.kuauthorErdoğan, Alper Tunga
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0

Files