Publication:
The use of lip motion for biometric speaker identification

dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.departmentN/A
dc.contributor.kuauthorTekalp, Ahmet Murat
dc.contributor.kuauthorErzin, Engin
dc.contributor.kuauthorYemez, Yücel
dc.contributor.kuauthorÇetingül, Hasan Ertan
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofileMaster Student
dc.contributor.otherDepartment of Electrical and Electronics Engineering
dc.contributor.otherDepartment of Computer Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.yokid26207
dc.contributor.yokid34503
dc.contributor.yokid107907
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T23:57:47Z
dc.date.issued2004
dc.description.abstractThis paper addresses the selection of best lip motion features for biometric open-set speaker identification. The best features are those that result in the highest discrimination of individual speakers in a population. We first detect the face region in each video frame. The lip region for each frame is then segmented following registration of successive face regions by global motion compensation. The initial lip feature vector is composed of the 2D-DCT coefficients of the optical flow vectors within the lip region at each frame. We propose to select the most discriminative features from the full set of transform coefficients by using a probabilistic measure that maximizes the ratio of intra-class and inter-class probabilities. The resulting discriminative feature vector with reduced dimension is expected to maximize the identification performance. Experimental results support that the resulting discriminative feature vector with reduced dimension improves the identification performance.
dc.description.indexedbyScopus
dc.description.indexedbyWoS
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorshipIEEE
dc.description.sponsorshipTUBITAK
dc.description.sponsorshipIstanbul Teknik Universitesi
dc.description.sponsorshipaselsan
dc.description.sponsorshipProfilo Telr@
dc.identifier.doi10.1109/SIU.2004.1338280
dc.identifier.isbn0780-3831-84
dc.identifier.linkhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-18844379701andpartnerID=40andmd5=b24367477f8c2264d8f5367e9bd58a9f
dc.identifier.quartileN/A
dc.identifier.urihttp://dx.doi.org/10.1109/SIU.2004.1338280
dc.identifier.urihttps://hdl.handle.net/20.500.14288/15357
dc.identifier.wos225861200038
dc.keywordsFace recognition
dc.keywordsMotion compensation
dc.keywordsProbability
dc.keywordsVectors
dc.keywordsVideo signal processing
dc.keywordsFace regions
dc.keywordsInter-class probability
dc.keywordsLip features
dc.keywordsTransform coefficient
dc.keywordsSpeech analysis
dc.languageTurkish
dc.publisherIEEE
dc.sourceProceedings of the IEEE 12th Signal Processing and Communications Applications Conference, SIU 2004
dc.subjectElectrical electronics engineering
dc.subjectComputer engineering
dc.titleThe use of lip motion for biometric speaker identification
dc.title.alternativeBiyometrik konuşmacı tanıma için dudak devinimi kullanımı]
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authorid0000-0003-1465-8121
local.contributor.authorid0000-0002-2715-2368
local.contributor.authorid0000-0002-7515-3138
local.contributor.authoridN/A
local.contributor.kuauthorTekalp, Ahmet Murat
local.contributor.kuauthorErzin, Engin
local.contributor.kuauthorYemez, Yücel
local.contributor.kuauthorÇetingül, Hasan Ertan
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0

Files