Publication:
BCS theory of time-reversal-symmetric Hofstadter-Hubbard model

Thumbnail Image

Organizational Units

Program

KU Authors

Co-Authors

Umucalılar, Rıfat Onur

Advisor

Publication Date

2017

Language

English

Type

Journal Article

Journal Title

Journal ISSN

Volume Title

Abstract

The competition between the length scales associated with the periodicity of a lattice potential and the cyclotron radius of a uniform magnetic field is known to have dramatic effects on the single-particle properties of a quantum particle, e.g., the fractal spectrum is known as the Hofstadter butterfly. Having this intricate competition in mind, we consider a two-component Fermi gas on a square optical lattice with opposite synthetic magnetic fields for the components, and study its effects on the many-body BCS-pairing phenomenon. By a careful addressing of the distinct superfluid transitions from the semimetal, quantum spin-Hall insulator, or normal phases, we explore the low-temperature phase diagrams of the model, displaying lobe structures that are reminiscent of the well-known Mott-insulator transitions of the Bose-Hubbard model.

Description

Source:

Physical Review Letters

Publisher:

American Physical Society (APS)

Keywords:

Subject

Physics

Citation

Endorsement

Review

Supplemented By

Referenced By

Copy Rights Note

0

Views

0

Downloads

View PlumX Details