Publication:
Grid-based decompositions for spatial data under local differential privacy

dc.conference.date16 September 2024 through 20 September 2024
dc.conference.locationBydgoszcz
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.departmentGraduate School of Sciences and Engineering
dc.contributor.kuauthorTaweel, Ameer
dc.contributor.kuauthorGürsoy, Mehmet Emre
dc.contributor.kuauthorBalioğlu, Berkay Kemal
dc.contributor.kuauthorKhodaie, Alireza
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGRADUATE SCHOOL OF SCIENCES AND ENGINEERING
dc.date.accessioned2025-05-22T10:32:33Z
dc.date.available2025-05-22
dc.date.issued2025
dc.description.abstractLocal differential privacy (LDP) has recently emerged as a popular privacy standard. With the growing popularity of LDP, recent works have applied LDP to spatial data, and grid-based decompositions have been a common building block in DP and LDP. In this paper, we study three grid-based decomposition methods for spatial data under LDP: Uniform Grid (UG), PrivAG, and AAG. UG is a static approach that consists of equal-sized cells. To enable data-dependent decomposition, PrivAG was proposed by Yang et al. (2022). To advance the state-of-the-art in adaptive grids, this paper proposes the Advanced Adaptive Grid (AAG) method. For each grid cell, following the intuition that the cell’s intra-cell density distribution will be affected by its neighbors, AAG performs uneven cell divisions depending on the neighboring cells’ densities. We experimentally compare UG, PrivAG, and AAG using three real-world location datasets, varying privacy budgets, and query sizes. Results show that AAG provides higher utility than PrivAG, demonstrating the superiority of our proposed approach. Furthermore, when the grid size is chosen optimally in UG, AAG still beats UG for small queries, but UG beats AAG for large (coarse-grained) queries.
dc.description.fulltextNo
dc.description.harvestedfromManual
dc.description.indexedbyScopus
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorshipTürkiye Bilimsel ve Teknolojik Araştırma Kurumu, TÜBİTAK, (121E303)
dc.identifier.doi10.1007/978-3-031-82349-7_8
dc.identifier.embargoNo
dc.identifier.endpage123
dc.identifier.isbn9783031823480
dc.identifier.issn0302-9743
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-105002446824
dc.identifier.startpage112
dc.identifier.urihttps://doi.org/10.1007/978-3-031-82349-7_8
dc.identifier.urihttps://hdl.handle.net/20.500.14288/29190
dc.identifier.volume15263 LNCS
dc.keywordsLocal differential privacy
dc.keywordsLocation privacy
dc.keywordsLocation-based services
dc.keywordsSpatial data management
dc.keywordsSpatial grids
dc.language.isoeng
dc.publisherSpringer
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofLecture Notes in Computer Science
dc.relation.ispartof19th International Workshop on Data Privacy Management, DPM 2024, 8th International Workshop on Cryptocurrencies and Blockchain Technology, CBT 2024 and 10th Workshop on the Security of Industrial Control Systems and of Cyber-Physical Systems, CyberICPS 2024 which were held in conjunction with the 29th European Symposium on Research in Computer Security, ESORICS 2024
dc.subjectComputer engineering
dc.titleGrid-based decompositions for spatial data under local differential privacy
dc.typeConference Proceeding
dspace.entity.typePublication
person.familyNameTaweel
person.familyNameGürsoy
person.familyNameBalioğlu
person.familyNameKhodaie
person.givenNameAmeer
person.givenNameMehmet Emre
person.givenNameBerkay Kemal
person.givenNameAlireza
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication434c9663-2b11-4e66-9399-c863e2ebae43
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files