Publication:
Speech features for telemonitoring of Parkinson's disease symptoms

dc.contributor.coauthorN/A
dc.contributor.departmentN/A
dc.contributor.departmentN/A
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorRamezani, Hamideh
dc.contributor.kuauthorKhaki, Hossein
dc.contributor.kuauthorErzin, Engin
dc.contributor.kuauthorAkan, Özgür Barış
dc.contributor.kuprofilePhD Student
dc.contributor.kuprofilePhD Student
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Computer Engineering
dc.contributor.otherDepartment of Electrical and Electronics Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokidN/A
dc.contributor.yokidN/A
dc.contributor.yokid34503
dc.contributor.yokid6647
dc.date.accessioned2024-11-10T00:02:30Z
dc.date.issued2017
dc.description.abstractThe aim of this paper is tracking Parkinson's disease (PD) progression based on its symptoms on vocal system using Unified Parkinsons Disease Rating Scale (UPDRS). We utilize a standard speech signal feature set, which contains 6373 static features as functionals of low-level descriptor (LLD) contours, and select the most informative ones using the maximal relevance and minimal redundancy based on correlations (mRMRC) criteria. Then, we evaluate performance of Gaussian mixture regression (GMR) and support vector regression (SVR) on estimating the third subscale of UPDRS, i.e., UPDRS: motor subscale (UPDRS-III). Among the most informative features, a list of features are selected after redundancy reduction. The selected features depict that LLDs providing information about spectrum flatness, spectral distribution of energy, and hoarseness of voice are the most important ones for estimating UPDRS-III. Moreover, the most informative statistical functions are related to range, maximum, minimum and standard deviation of LLDs, which is an evidence of the muscle weakness due to the PD. Furthermore, GMR outperforms SVR on compact feature sets while the performance of SVR improves by increasing number of features.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsorshipERC [616922]
dc.description.sponsorshipEU [665564]
dc.description.sponsorshipTUBITAK[BIDEB-2215] This work was supported in part by ERC project MinERVa (ERC-2013-CoG #616922), EU project CIRCLE (EU-H2020-FET-Open #665564), and TUBITAKgraduate scholarship program (BIDEB-2215).
dc.identifier.doi10.1109/EMBC.2017.8037685
dc.identifier.isbn9781-5090-2809-2
dc.identifier.issn1557-170X
dc.identifier.linkhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85032222935&doi=10.1109%2fEMBC.2017.8037685&partnerID=40&md5=02976f78c9368b08a786b872da90bfb4
dc.identifier.scopus2-s2.0-85032222935
dc.identifier.urihttp://dx.doi.org/10.1109/EMBC.2017.8037685
dc.identifier.urihttps://hdl.handle.net/20.500.14288/16158
dc.identifier.wos427085304061
dc.keywordsDisease progression
dc.keywordsHumans
dc.keywordsParkinson disease
dc.keywordsSeverity of illness index
dc.keywordsSpeech
dc.keywordsVoice
dc.languageEnglish
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.sourceProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
dc.subjectBiophysics
dc.subjectEngineering
dc.subjectBiomedical engineering
dc.titleSpeech features for telemonitoring of Parkinson's disease symptoms
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authorid0000-0003-3813-5077
local.contributor.authoridN/A
local.contributor.authorid0000-0002-2715-2368
local.contributor.authorid0000-0003-2523-3858
local.contributor.kuauthorRamezani, Hamideh
local.contributor.kuauthorKhaki, Hossein
local.contributor.kuauthorErzin, Engin
local.contributor.kuauthorAkan, Özgür Barış
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0

Files