Publication:
Machine learning-assisted network-aware bitrate prediction for remote driving

dc.conference.date2025-06-23 through 2025-06-26
dc.conference.locationChisinau
dc.contributor.coauthorBakirhan, Hira
dc.contributor.departmentKUFOTAL (Koc University Ford Otosan Automotive Technologies Laboratory)
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorReyhanoğlu, Aslıhan
dc.contributor.kuauthorKümeç, Feyzi Ege
dc.contributor.kuauthorBilge, Abdulkadir
dc.contributor.kuauthorTuran, Buğra
dc.contributor.kuauthorErgen, Sinem Çöleri
dc.contributor.schoolcollegeinstituteResearch Center
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2025-12-31T08:22:23Z
dc.date.available2025-12-31
dc.date.issued2025
dc.description.abstractRemote driving represents a promising technology with significant potential to provide more efficient transportation solutions. Its success relies on low-latency communication between remote operators and vehicles to provide real-time sensor information. In this paper, we propose a novel machine learning (ML)-assisted network-aware bitrate prediction framework to facilitate adaptive video streaming by adjusting its quality based on varying network conditions encountered during remote driving scenarios. First, we build a video streaming platform leveraging H.264 compression to gather data for training ML-based bit-rate prediction models. These models include Random Forest (RF), Gradient Boosting Machine (GBM), Light GBM (LGBM), AdaBoost, Deep Neural Network (DNN) and Extreme Gradient Boosting (XGBoost). Transmitted packet size, Packet Delivery Ratio (PDR), Received Signal Strength Indicator (RSSI), throughput, and successful packet transmission interval are used to predict bitrates. Furthermore, we compare the prediction accuracy of the models in terms of R-squared (R2 score), root-mean-square error (RMSE), mean absolute percentage error (MAPE) and mean absolute error (MAE). Our results show that XGBoost is the most successful algorithm for bit-rate prediction. In terms of MAPE, XGBoost shows an enhancement of % 66.54, compared to AdaBoost.
dc.description.fulltextYes
dc.description.harvestedfromManual
dc.description.indexedbyScopus
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuN/A
dc.identifier.doi10.1109/BlackSeaCom65655.2025.11193910
dc.identifier.embargoNo
dc.identifier.isbn9798331537197
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-105021003088
dc.identifier.urihttps://doi.org/10.1109/BlackSeaCom65655.2025.11193910
dc.identifier.urihttps://hdl.handle.net/20.500.14288/31656
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartof2025 IEEE International Black Sea Conference on Communications and Networking, BlackSeaCom 2025
dc.relation.openaccessYes
dc.rightsCC BY-NC-ND (Attribution-NonCommercial-NoDerivs)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectMachine Learning
dc.titleMachine learning-assisted network-aware bitrate prediction for remote driving
dc.typeConference Proceeding
dspace.entity.typePublication
person.familyNameReyhanoğlu
person.familyNameKümeç
person.familyNameBilge
person.familyNameTuran
person.familyNameErgen
person.givenNameAslıhan
person.givenNameFeyzi Ege
person.givenNameAbdulkadir
person.givenNameBuğra
person.givenNameSinem Çöleri
relation.isOrgUnitOfPublication83bd17a8-82d2-4e94-83f5-a68e162cd542
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery83bd17a8-82d2-4e94-83f5-a68e162cd542
relation.isParentOrgUnitOfPublicationd437580f-9309-4ecb-864a-4af58309d287
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication.latestForDiscoveryd437580f-9309-4ecb-864a-4af58309d287

Files