Publication:
Analysis of information flow in miso neuro-spike communication channel with synaptic plasticity

dc.contributor.coauthorRamezani H.
dc.contributor.coauthorMuzio G.
dc.contributor.departmentN/A
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorKhan, Tooba
dc.contributor.kuauthorAkan, Özgür Barış
dc.contributor.kuprofilePhD Student
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Electrical and Electronics Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokidN/A
dc.contributor.yokid6647
dc.date.accessioned2024-11-09T23:45:47Z
dc.date.issued2018
dc.description.abstractCommunication among neurons is the most promising technique for biocompatible nanonetworks. This necessitates the thorough communication theoretical analysis of information transmission among neurons. The information flow in neuro-spike communication channel is regulated by the ability of neurons to change their synaptic strengths over time, i.e. synaptic plasticity. Thus, the performance evaluation of the nervous nanonetwork is incomplete without considering the influence of synaptic plasticity. Hence, in this paper, we provide a comprehensive model for multiple-input single-output (MISO) neuro-spike communication by integrating the spike timing dependent plasticity (STDP) into existing channel model. We simulate this model for a realistic scenario with correlated inputs and varying spiking threshold. We show that plasticity is strengthening the correlated input synapses at the expense of weakening the synapses with uncorrelated inputs. Moreover, a nonlinear behavior in signal transmission is observed with changing spiking threshold.
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.volume2019-January
dc.identifier.doi10.1109/NANO.2018.8706253
dc.identifier.issn1944-9399
dc.identifier.linkhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85065670101&doi=10.1109%2fNANO.2018.8706253&partnerID=40&md5=daa258d26ce82b105870c86a07820b72
dc.identifier.scopus2-s2.0-85065670101
dc.identifier.urihttp://dx.doi.org/10.1109/NANO.2018.8706253
dc.identifier.urihttps://hdl.handle.net/20.500.14288/13871
dc.keywordsBiocompatibility
dc.keywordsCommunication channels, information theory
dc.keywordsInformation analysis
dc.keywordsNanotechnology
dc.keywordsComprehensive model
dc.keywordsInformation transmission
dc.keywordsMultiple input single outputs
dc.keywordsNonlinear behavior
dc.keywordsRealistic scenario
dc.keywordsSignal transmission
dc.keywordsSpike timing dependent plasticities
dc.keywordsSynaptic plasticity
dc.keywordsNeurons
dc.languageEnglish
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.sourceProceedings of the IEEE Conference on Nanotechnology
dc.subjectBiochemical research methods
dc.subjectNanoscience
dc.subjectNanotechnology
dc.titleAnalysis of information flow in miso neuro-spike communication channel with synaptic plasticity
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authoridN/A
local.contributor.authorid0000-0003-2523-3858
local.contributor.kuauthorKhan, Tooba
local.contributor.kuauthorAkan, Özgür Barış
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0

Files