Publication:
Machine learning – informed development of high entropy alloys with enhanced corrosion resistance

dc.contributor.coauthorYılmaz, R.
dc.contributor.coauthorMaier, H.J.
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.departmentDepartment of Chemistry
dc.contributor.departmentKUYTAM (Koç University Surface Science and Technology Center)
dc.contributor.departmentGraduate School of Sciences and Engineering
dc.contributor.kuauthorCanadinç, Demircan
dc.contributor.kuauthorKılıç, Elif Bedir
dc.contributor.kuauthorNazarahari, Alireza
dc.contributor.kuauthorÖzdemir, Hüseyin Can
dc.contributor.kuauthorÜnal, Uğur
dc.contributor.kuauthorYılmaz, Bengisu
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.schoolcollegeinstituteResearch Center
dc.contributor.schoolcollegeinstituteGRADUATE SCHOOL OF SCIENCES AND ENGINEERING
dc.date.accessioned2024-12-29T09:37:09Z
dc.date.issued2024
dc.description.abstractThis study demonstrates the use of machine learning as a potential tool to efficiently develop new biomedical alloys with improved corrosion resistance by exploring the whole compositional space in the HfNbTaTiZr system. Owing to the small volume and inherited uncertainty of available corrosion data in the literature, k-fold cross-validation and bootstrapping were used to quantify the uncertainty of models and select a robust one. Potentiodynamic polarization experiments were performed on the predicted composition in simulated body fluid at 37 ± 1 °C for validation, demonstrating the new alloy's superior corrosion properties with a homogeneous microstructure as opposed to the dendritic structure. © 2023
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipThe authors thank Dr. Mustafa Baris Yagci for his assistance with the XPS measurements conducted at the Koc University Surface Science and Technology Center (KUYTAM). D. Canadinc acknowledges the support by Alexander von Humboldt Foundation within the scope of the Humboldt Research Award. H.J. Maier acknowledges financial support by Deutsche Forschungsgemeinschaft (project # 426335750 ).
dc.description.volume476
dc.identifier.doi10.1016/j.electacta.2023.143722
dc.identifier.eissn1873-3859
dc.identifier.issn0013-4686
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85181681976
dc.identifier.urihttps://doi.org/10.1016/j.electacta.2023.143722
dc.identifier.urihttps://hdl.handle.net/20.500.14288/22286
dc.identifier.wos1165330800001
dc.keywordsAlloy design
dc.keywordsCorrosion
dc.keywordsHigh entropy alloy
dc.keywordsMachine learning
dc.keywordsMicrostructure
dc.language.isoeng
dc.publisherElsevier Ltd
dc.relation.grantnoAlexander von Humboldt-Stiftung, AvH
dc.relation.grantnoDeutsche Forschungsgemeinschaft, DFG, (426335750)
dc.relation.ispartofElectrochimica Acta
dc.subjectCobalt alloys
dc.subjectCrystal structure
dc.subjectHigh entropy alloys
dc.titleMachine learning – informed development of high entropy alloys with enhanced corrosion resistance
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorÖzdemir, Hüseyin Can
local.contributor.kuauthorNazarahari, Alireza
local.contributor.kuauthorYılmaz, Bengisu
local.contributor.kuauthorCanadinç, Demircan
local.contributor.kuauthorKılıç, Elif Bedir
local.contributor.kuauthorÜnal, Uğur
local.publication.orgunit1GRADUATE SCHOOL OF SCIENCES AND ENGINEERING
local.publication.orgunit2Department of Mechanical Engineering;Department of Chemistry
local.publication.orgunit2Graduate School of Sciences and Engineering
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublication035d8150-86c9-4107-af16-a6f0a4d538eb
relation.isOrgUnitOfPublicationd41f66ba-d7a4-4790-9f8f-a456c391209b
relation.isOrgUnitOfPublication3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublicationaf0395b0-7219-4165-a909-7016fa30932d
relation.isParentOrgUnitOfPublicationd437580f-9309-4ecb-864a-4af58309d287
relation.isParentOrgUnitOfPublication434c9663-2b11-4e66-9399-c863e2ebae43
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files