Publication: Machine learning – informed development of high entropy alloys with enhanced corrosion resistance
dc.contributor.coauthor | Yılmaz, R. | |
dc.contributor.coauthor | Maier, H.J. | |
dc.contributor.department | Department of Mechanical Engineering | |
dc.contributor.department | Department of Chemistry | |
dc.contributor.department | KUYTAM (Koç University Surface Science and Technology Center) | |
dc.contributor.department | Graduate School of Sciences and Engineering | |
dc.contributor.kuauthor | Canadinç, Demircan | |
dc.contributor.kuauthor | Kılıç, Elif Bedir | |
dc.contributor.kuauthor | Nazarahari, Alireza | |
dc.contributor.kuauthor | Özdemir, Hüseyin Can | |
dc.contributor.kuauthor | Ünal, Uğur | |
dc.contributor.kuauthor | Yılmaz, Bengisu | |
dc.contributor.schoolcollegeinstitute | College of Engineering | |
dc.contributor.schoolcollegeinstitute | College of Sciences | |
dc.contributor.schoolcollegeinstitute | Research Center | |
dc.contributor.schoolcollegeinstitute | GRADUATE SCHOOL OF SCIENCES AND ENGINEERING | |
dc.date.accessioned | 2024-12-29T09:37:09Z | |
dc.date.issued | 2024 | |
dc.description.abstract | This study demonstrates the use of machine learning as a potential tool to efficiently develop new biomedical alloys with improved corrosion resistance by exploring the whole compositional space in the HfNbTaTiZr system. Owing to the small volume and inherited uncertainty of available corrosion data in the literature, k-fold cross-validation and bootstrapping were used to quantify the uncertainty of models and select a robust one. Potentiodynamic polarization experiments were performed on the predicted composition in simulated body fluid at 37 ± 1 °C for validation, demonstrating the new alloy's superior corrosion properties with a homogeneous microstructure as opposed to the dendritic structure. © 2023 | |
dc.description.indexedby | WOS | |
dc.description.indexedby | Scopus | |
dc.description.publisherscope | International | |
dc.description.sponsoredbyTubitakEu | N/A | |
dc.description.sponsorship | The authors thank Dr. Mustafa Baris Yagci for his assistance with the XPS measurements conducted at the Koc University Surface Science and Technology Center (KUYTAM). D. Canadinc acknowledges the support by Alexander von Humboldt Foundation within the scope of the Humboldt Research Award. H.J. Maier acknowledges financial support by Deutsche Forschungsgemeinschaft (project # 426335750 ). | |
dc.description.volume | 476 | |
dc.identifier.doi | 10.1016/j.electacta.2023.143722 | |
dc.identifier.eissn | 1873-3859 | |
dc.identifier.issn | 0013-4686 | |
dc.identifier.quartile | Q1 | |
dc.identifier.scopus | 2-s2.0-85181681976 | |
dc.identifier.uri | https://doi.org/10.1016/j.electacta.2023.143722 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14288/22286 | |
dc.identifier.wos | 1165330800001 | |
dc.keywords | Alloy design | |
dc.keywords | Corrosion | |
dc.keywords | High entropy alloy | |
dc.keywords | Machine learning | |
dc.keywords | Microstructure | |
dc.language.iso | eng | |
dc.publisher | Elsevier Ltd | |
dc.relation.grantno | Alexander von Humboldt-Stiftung, AvH | |
dc.relation.grantno | Deutsche Forschungsgemeinschaft, DFG, (426335750) | |
dc.relation.ispartof | Electrochimica Acta | |
dc.subject | Cobalt alloys | |
dc.subject | Crystal structure | |
dc.subject | High entropy alloys | |
dc.title | Machine learning – informed development of high entropy alloys with enhanced corrosion resistance | |
dc.type | Journal Article | |
dspace.entity.type | Publication | |
local.contributor.kuauthor | Özdemir, Hüseyin Can | |
local.contributor.kuauthor | Nazarahari, Alireza | |
local.contributor.kuauthor | Yılmaz, Bengisu | |
local.contributor.kuauthor | Canadinç, Demircan | |
local.contributor.kuauthor | Kılıç, Elif Bedir | |
local.contributor.kuauthor | Ünal, Uğur | |
local.publication.orgunit1 | GRADUATE SCHOOL OF SCIENCES AND ENGINEERING | |
local.publication.orgunit2 | Department of Mechanical Engineering;Department of Chemistry | |
local.publication.orgunit2 | Graduate School of Sciences and Engineering | |
relation.isOrgUnitOfPublication | ba2836f3-206d-4724-918c-f598f0086a36 | |
relation.isOrgUnitOfPublication | 035d8150-86c9-4107-af16-a6f0a4d538eb | |
relation.isOrgUnitOfPublication | d41f66ba-d7a4-4790-9f8f-a456c391209b | |
relation.isOrgUnitOfPublication | 3fc31c89-e803-4eb1-af6b-6258bc42c3d8 | |
relation.isOrgUnitOfPublication.latestForDiscovery | ba2836f3-206d-4724-918c-f598f0086a36 | |
relation.isParentOrgUnitOfPublication | 8e756b23-2d4a-4ce8-b1b3-62c794a8c164 | |
relation.isParentOrgUnitOfPublication | af0395b0-7219-4165-a909-7016fa30932d | |
relation.isParentOrgUnitOfPublication | d437580f-9309-4ecb-864a-4af58309d287 | |
relation.isParentOrgUnitOfPublication | 434c9663-2b11-4e66-9399-c863e2ebae43 | |
relation.isParentOrgUnitOfPublication.latestForDiscovery | 8e756b23-2d4a-4ce8-b1b3-62c794a8c164 |