Publication: Contact 3-manifolds with infinitely many stein fillings
dc.contributor.coauthor | Stipsicz, Andras | |
dc.contributor.department | Department of Mathematics | |
dc.contributor.kuauthor | Özbağcı, Burak | |
dc.contributor.kuprofile | Faculty Member | |
dc.contributor.other | Department of Mathematics | |
dc.contributor.schoolcollegeinstitute | College of Sciences | |
dc.contributor.yokid | 197389 | |
dc.date.accessioned | 2024-11-09T23:06:05Z | |
dc.date.issued | 2004 | |
dc.description.abstract | Infinitely many contact 3-manifolds each admitting infinitely many pairwise non-diffeomorphic Stein fillings are constructed. We use Lefschetz fibrations in our constructions and compute their first homologies to distinguish the fillings. | |
dc.description.indexedby | WoS | |
dc.description.indexedby | Scopus | |
dc.description.issue | 5 | |
dc.description.openaccess | YES | |
dc.description.publisherscope | International | |
dc.description.sponsoredbyTubitakEu | N/A | |
dc.description.volume | 132 | |
dc.identifier.doi | 10.1090/S0002-9939-03-07328-3 | |
dc.identifier.eissn | 1088-6826 | |
dc.identifier.issn | 0002-9939 | |
dc.identifier.quartile | N/A | |
dc.identifier.scopus | 2-s2.0-2142734929 | |
dc.identifier.uri | http://dx.doi.org/10.1090/S0002-9939-03-07328-3 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14288/8917 | |
dc.identifier.wos | 189298800038 | |
dc.keywords | Lefschetz fibrations | |
dc.keywords | Surfaces | |
dc.language | English | |
dc.publisher | American Mathematical Society (AMS) | |
dc.source | Proceedings of the American Mathematical Society | |
dc.subject | Mathematics | |
dc.subject | Applied mathematics | |
dc.title | Contact 3-manifolds with infinitely many stein fillings | |
dc.type | Journal Article | |
dspace.entity.type | Publication | |
local.contributor.authorid | 0000-0002-9758-1045 | |
local.contributor.kuauthor | Özbağcı, Burak | |
relation.isOrgUnitOfPublication | 2159b841-6c2d-4f54-b1d4-b6ba86edfdbe | |
relation.isOrgUnitOfPublication.latestForDiscovery | 2159b841-6c2d-4f54-b1d4-b6ba86edfdbe |