Publication:
A scalable approach for online hierarchical big data mining

dc.contributor.coauthorVanlı, N. Denizcan
dc.contributor.coauthorSayın, Muhammed O.
dc.contributor.coauthorKozat, Süleyman S.
dc.contributor.departmentGraduate School of Social Sciences and Humanities
dc.contributor.kuauthorDelibalta, İbrahim
dc.contributor.schoolcollegeinstituteGRADUATE SCHOOL OF SOCIAL SCIENCES AND HUMANITIES
dc.date.accessioned2024-11-09T22:45:28Z
dc.date.issued2015
dc.description.abstractWe study online compound decision problems in the context of sequential prediction of real valued sequences. In particular, we consider finite state (FS) predictors that are constructed based on the sequence history, whose length is quite large for applications involving big data. To mitigate overtraining problems, we define hierarchical equivalence classes and apply the exponentiated gradient (EG) algorithm to achieve the performance of the best state assignment defined on the hierarchy. For a sequence history of length h, we combine more than 2((h/e)h) different FS predictors each corresponding to a different combination of equivalence classes and asymptotically achieve the performance of the best FS predictor with computational complexity only linear in the pattern length h. Our approach is generic in the sense that it can be applied to general hierarchical equivalence class definitions. Although we work under accumulated square loss as the performance measure, our results hold for a wide range of frameworks and loss functions as detailed in the paper.
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.identifier.doi10.1109/BigDataCongress.2015.11
dc.identifier.isbn978-1-4673-7278-7
dc.identifier.issn2379-7703
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-84959469783
dc.identifier.urihttps://doi.org/10.1109/BigDataCongress.2015.11
dc.identifier.urihttps://hdl.handle.net/20.500.14288/6090
dc.identifier.wos380443700001
dc.keywordsHierarchical data mining
dc.keywordsOnline learning
dc.keywordsSequential prediction
dc.language.isoeng
dc.publisherIEEE
dc.relation.ispartof2015 IEEE International Congress on Big Data - Bigdata Congress 2015
dc.subjectComputer science
dc.subjectTheory methods
dc.subjectEngineering
dc.subjectElectrical electronic engineering
dc.titleA scalable approach for online hierarchical big data mining
dc.typeConference Proceeding
dspace.entity.typePublication
local.contributor.kuauthorDelibalta, İbrahim
local.publication.orgunit1GRADUATE SCHOOL OF SOCIAL SCIENCES AND HUMANITIES
local.publication.orgunit2Graduate School of Social Sciences and Humanities
relation.isOrgUnitOfPublicatione192fff1-4efe-45a7-ab71-30233fc185a9
relation.isOrgUnitOfPublication.latestForDiscoverye192fff1-4efe-45a7-ab71-30233fc185a9
relation.isParentOrgUnitOfPublicationc5c9bf5f-4655-411c-a602-0d68f2e2ad88
relation.isParentOrgUnitOfPublication.latestForDiscoveryc5c9bf5f-4655-411c-a602-0d68f2e2ad88

Files