Publication:
Quantum coherence and correlations of optical radiation by atomic ensembles interacting with a two-level atom in a microwave cavity

Thumbnail Image

Departments

School / College / Institute

Program

KU Authors

Co-Authors

Publication Date

Language

Embargo Status

NO

Journal Title

Journal ISSN

Volume Title

Alternative Title

Abstract

We examine quantum statistics of optical photons emitted from atomic ensembles which are classically driven and simultaneously coupled to a two-level atom via microwave photon exchange. Quantum statistics and correlations are analyzed by calculating second-order coherence degree, von Neumann entropy, spin squeezing for multiparticle entanglement, as well as genuine two-and three-mode entanglement parameters for steady-state and nonequilibrium situations. Coherent transfer of population between the radiation modes and quantum-state mapping between the two-level atom and the optical modes are discussed. A potential experimental realization of the theoretical results in a superconducting coplanar waveguide resonator containing diamond crystals with nitrogen-vacancy color centers and a superconducting artificial two-level atom is discussed.

Source

Publisher

American Physical Society (APS)

Subject

Optics, Physics

Citation

Has Part

Source

Physical Review A

Book Series Title

Edition

DOI

10.1103/PhysRevA.83.023805

item.page.datauri

Link

Rights

Copyrights Note

Endorsement

Review

Supplemented By

Referenced By

0

Views

3

Downloads

View PlumX Details